Innervisions: The Connection Between Data and Organizational Vision

During my day job I provide a number of fairly large customers with support to determine their needs for software that meets the criteria from my last post. That is, I provide software that takes an open data systems approach to data transformation and integration. My team and I deliver this capability with an open user interface based on Windows and .NET components augmented by time-phased and data management functionality that puts SMEs back in the driver’s seat of what they need in terms of analysis and data visualization. In virtually all cases our technology obviates the need for the extensive, time consuming, and costly services of a data scientist or software developer.

Over the course of my career both as a consumer and a provider of technology solutions, I have seen an evolution in software that began with simple point solutions being developed to automate particular manual processes, to more sophisticated solutions that are designed to automate a complex function. In most of these cases, a customer has identified a gap or deficiency in their requirements that represents an inefficiency or sub-optimization of their processes and then seek a software “tool” to acquire in order to address that specific purpose. The application of these “tools” combine to meet the overall vision of the organization or sub-system within the organization.

What Do You Do With A Problem Like “Tools”

The capabilities of software in terms of data handling capabilities and functionality double every 12-18 months in today’s environment. The use of the term “tools” for software, which is really based on a pre-2000 concept, is that in the mind’s eye software is analogous to any other tool. In the literature, particularly in that authored by consultants, this analogy is oftentimes extended to common household or construction tools: a wrench, a screwdriver, or a power drill. Under this concept each tool has a specific purpose and it is up to the SME to determine which tool is best for a specific job.

The problem with this concept is that not only is it obsolete, but it does great harm financially to the organization in terms of overhead costs, organizational efficiency and effectiveness.

First of all, most physical tools are fairly static in their specific use. A hammer is still a hammer, even if some sort of power is extended to give it power. It’s purpose remains to use force to insert a connective fastener, like a nail, into a medium, like a piece of wood. A nail gun, for instance, is a type of hammer. It is more powerful and efficient but, still, it is a glorified hammer. It is a superior tool in construction because it is more efficient, provides a consistency in quality, and is faster. It also eliminates the factors of arm strength, physical coordination, and visual alignment skills of the user; as anyone who has experienced a sore thumb as a result of a misaligned strike can attest. But a nail gun is still restricted to its specific function–sinking nails for the purpose of fastening.

Software, as it has evolved, was similarly based on the concept of a tool. The physical functions of a specific vocation were the first to undergo digitization: accountants and business operations personnel had spreadsheet software applications, secretarial and clerical staffs (yes, they used to exist) had word processing software, marketing and middle management could relay their ideas with presentation software, and the list went on.

As the power of software improved it followed the functions of traditional line-and-staff organizations. Many of these were built to replace the physical calculation of formulae and concepts that required a slide rule and, later, a scientific calculator. Soon scheduling software replaced manual GANTT planning, earned value software automated the calculation of basic EVM analytics, and risk software allowed for the complex formulation involved in assessing risk for the branch of a plan using simulated Monte Carlo analysis.

Each of these software applications targeted a specific occupation, and incorporated specific knowledge (functionality) required of that occupation.

Organizational software for multiple functions usually consisted of a suite of tools under the rubric of an ERP or Business Intelligence System. Modules and “bolt-ons” consisted of tying together business processes and point software requirements augmented by large software consulting staffs to customize the solutions. In actual practice, however, these were software tools tied together though a common brand and operating environment. Oftentimes the individual bolt-ons and tools weren’t even authored by the same development team with a common vision in mind, but a reaction to market forces that required a gap be filled through acquisition of a company or intellectual property.

Needless to say, these “enterprise” solutions aren’t that at all. Instead, they are a business-driven means to penetrate a vertical by providing scattershot functionality. Once inside a company or organization the other bolt-ons and modules are marketed in order to take over other business processes. Integration is achieved across domains through data transfer or other interpretive methods.

This approach has been successful, as it has been since the halcyon days when IBM dominated the computing market, especially among the larger software firms. It also meets many of the emotional and psychic needs of many senior managers. After all, the software firm–given its economic size–feels solid. The numbers of specialists introduced into the organization to augment staff provide a feeling of safety and accomplishment. C-level management and stockholders feel that risk is handled given that their software needs are being met at some level.

What this approach did not, and does not, meet is genuine data integration, especially given the realization that the data we have been using has been inadequate and artificially restricted based on what software providers were convincing their customers was the art of the possible. The term “Big Data” began to be introduced into the lexicon, and with it the economic realization that capturing and integrating datasets that were previously “impossible” to capture and integrate was (and presently is) an economic imperative.

But the approach of incumbents, whose priority is to remain “sticky” and to defend territory against new technologies, was to respond: “we have a tool for that.” Thus, the result has been the further introduction of inefficient individual applications with their inability to fully exploit data. Among these tools are largely “dumb”–that is, viewing data flat–data visualization tools that essentially paint pretty pictures from Excel or, when they need to be applied on a larger scale, default to the old business intelligence brute force approach of applying labor to derive the importance in data. Old habits are hard to change and what one person has done another can do. But this is the economic equivalent of what is called rent-seeking behavior. That is, it is inefficient and exploitative.

After all, if you buy what was advertised as a sports car you expect to see an engine under the hood and a transmission connected to a drivetrain and a pretty powerful one at that. What one does not expect is to buy the car but have to design and build the features of these essential systems while a team of individuals are paid by the hour to push us to where we want to go. Yet, organizations (and especially consultants) seem to be happy with this model when it comes to information management.

Thus, when a technology company like mine comes across a request for proposal, an informal invitation to participate in market research, or in exploratory professional meetings (largely virtual as of this writing), the emphasis and terminology is on software “tools”, which limits the ability of consumers to exploit technology because it mentally paints a picture that limits the definition of what software should do and can do.

This mindset, however, is beginning to change and, no doubt, our current predicament under the Coronavirus crisis will accelerate that transition.

To take our analogy one step further, we are long past the time when we must buy each component of an automobile individually and then assemble it in our own garage. Point solutions, which are set and inelastic, are like individual parts of the car.

Enterprise solutions consisting of different modules and datasets, oftentimes constructed from incompatible foundations, exacerbate this situation and add the element of labor to a supposedly automated process, like buying OEM products and having to upgrade the automobile we supposed bought to do its job, but still needed (with the help of a mechanic) to perform the normal functions of steering, stopping, and accelerating.

Open systems solutions provide more flexibility, but they can be both a blessing and a curse. The challenge is to provide the right balance of out-of-the-box point solution-type functionality while still providing enough flexibility for adaptability. Taking a common data approach is key to achieving this balance. This will require the abandonment of the concept of software “tools” and shifting the focus on data.

Data and Information Take Over: Two Models

The economic imperative for data integration and optimization developed from the needs of the organization and its practitioners–whether it be managers, analysts, or auditors working in a company, a business unit, a governmental agency, or a program or project organization–is to be positioned facing forward.

In order to face forward one must first establish a knowledge-based organization or, as oftentimes identified, a data-driven organization. What this means in real terms is that data is captured, processed, and contextualized so that its importance and meaning can be derived in a timely manner so that something can be done about what is happening. During our own present situation this is not just an economic imperative, but for public health an existential one for many of us.

Thus, we are faced with several key dimensions that must be addressed: size, manner of integration, contextualization, timeliness, and target. This applies to both known and unknown datasets.

Our known datasets are those that are already being used and populated in existing systems. We know, for example, that in program and project management that we require an estimate and plan, a schedule, a manner of organizing and tracking our progress, financial management and material management systems and others. These represent our pool of structured data, and understanding the lexicon of these systems is what is necessary to normalize and rationalize the data through a universal translator.

Our unknown datasets are those that require collection but, when done, is collected and processed in an ad hoc manner. Usually the need for this data collection is learned through the school of hard knocks. In other cases, the information is not collected at all or accidentally, such as when management relies on outside experts and anecdotal information. This is the equivalent of an organizational JOHARI window shown below.

Overview of Johari Window with quadrants
showing the relationships of self-knowledge and understanding

The Johari Window explains our perceptions and our relationship to the outside world. Our universe is not a construction of our own making or imagination. We cannot make our own reality nor are there “alternative facts.” The most colorful example of refuting this specious philosophical mind game is relayed to us in Boswell’s Life of Samuel Johnson.

After we came out of the church, we stood talking for some time together of Bishop Berkeley’s ingenious sophistry to prove the nonexistence of matter, and that every thing in the universe is merely ideal. I observed, that though we are satisfied his doctrine is not true, it is impossible to refute it. I never shall forget the alacrity with which Johnson answered, striking his foot with mighty force against a large stone, till he rebounded from it — “I refute it thus.”

We can deny what we do not know, or construct magical thinking. but reality is unmoved. In the case of Johnson he kicked the stone and the stone, also unmoved, kicked back in the form of the pain that Johnson felt when he “rebounded from it”.

Nor are the quadrants equal in our perceptual windows. Some people and organizations are very well informed and others less so, but the tension and conflict of our lives–both internally and externally–relates to expanding the “open” and “facade” portions of the Johari window so that we are not only informed of how others register us, but also to uncover the unknown, and to attempt to control how others perceive us in our various roles and guises.

We see this playing out in tracking the current Coronavirus pandemic. The absence of reliable widespread tests and testing infrastructure has impeded an understanding of the virus and the most effective strategies to deploy in dealing with it. Absent data, health and governmental agencies have been left with no choice but to use the same social distancing and travel restrictions deployed during the 1918 Influenza Pandemic and then, if lifting some of these, hope for the best.

This is the situation despite the fact that national risk assessments and risk registers, such as the U.S. National Security Council Pandemic Playbook and the U.K. National Risk Register, outlined measures to be taken given certain particular indicators. No doubt there are lessons to be learned here, but at the core lesson is the fact that, absent reliable and timely data that is converted into information that can be used in a decisive and practical manner, an organization, a state, or a nation risks its survival when it fails to imagine what information it needs to collect, absent the prosaic information that comes from performing the day-to-day routine.

Admittedly, there is no great insight here regarding this need (or, at least, there shouldn’t be). This condition is the reason why intelligence systems and agencies were created in the first place. It is why military and health services imagine scenarios and war-game them, and why organizations deploy brain-storming. Individuals and organizations that go into the world uninformed or self-deluded do not last long, and history is replete with such examples. Blanche DuBois relied on the kindness of strangers and we are best served by her experience as an archetype.

And yet, we still find ourselves struggling to properly collect, integrate, and utilize information at the same time that we have come to the realization that we need to collect and process information from larger pools of data. The root cause of this condition, as asserted above, rests in the mental framing of how to approach data and the problem that needs to be solved. It requires us to change the conceptual framework that relies on the concept of “tools.”

We can make this adjustment by realigning the object of the challenge so that it conforms with what we imagine to be the desired end-state. But, still, how do we determine what we need to collect? This is first a question of perception as opposed to one regarding knowledge: what one views as not only necessary but within the realm of possibility.

Once again, this dilemma is best served by models and, in this case, it is not unlike the Overton Window. Those preferring to eschew Wikipedia entries can also find a more detailed and nuanced definition at the source through the Mackinac Center for Public Policy website.

Overton Windows showing degrees of acceptability as modified by Joshua Trevino

Joseph Overton described the window as one of defining acceptable political policies in the mind of the public. He used the terms “more free” and “less free” to describe policies that think tanks recommend to describe the amount of government intervention, avoiding the left-right comparisons used by polemicists. Various adjustments and variations to the basic window have been proposed since his original use of the model, but it has been expanded to describe public perceptions in general on a host of socioeconomic concerns.

As with the Johari Window, I would posit that there is an analogous Overton Window in relation to information that frames what is viewed as the art of the possible. These perceptions influence the actions of decision-makers in assessing the risk involved in buying software solutions. When it comes to the rapidly developing field of data capture, transformation, and effective utilization, the perception from the start suggests some degree of risk and the danger of moving too quickly. For those in the field of data optimization, given that new technology capacity increases exponentially in shorter periods of time, the barrier here is to shift the informational Overton Window so that the market is educated on the risk-reward equation.

A Unified Model for Aligning Our Data

We have discussed two models up to this point in our exploration: an Informational Johari Window and an Informational Overton Window. Each of these models, using a simplified method, isolates different dimensions of the problem of data, which when freed of the concept of “tools” unlocking it, provides us with a clearer picture of the essential nature of its capture and utilization, and to what purposes.

We are now ready to take the next step in defining how to approach data to serve the strategic interests of the enterprise or organization.

For those of us in the information field, especially in the early years when applying solutions to line-and-staff organizations, what we found is that the very introduction of the new technology changed both the structure and nature of the organization. Initially we noted a sophisticated and accelerated version of the Hawthorne Effect. But there was something more elemental and significant going on.

Digital technology is amazingly attuned, especially when properly designed and deployed, to extend the functions of human knowledge gathering and processing. In this way it can be interpreted as an extension of human evolution–of the nature of human society acting as a complex adaptive system. In fact, there are so many connections between early physical, methodological, and industrial societal developments to digitization, such as the connection between the development of the Jacquard Loom to the development of the computer punch card (and there are others) that it seems that human society would have found a way to get to this point regardless of the existence of the intervening human pioneers, though their actual contributions are clear. (For further information on the waves of development see the books Future Shock and The Third Wave by Alvin Toffler.)

When many of us first applied digitized technology to knowledge workers (in my case in the field of contract management) we found that the very introduction of the technology changed perceptions, work habits, and organizational structures in very essential ways. Like the effect of the idea of evolution as described by Daniel Dennett, the application of digital evolution is like a universal acid–it eats through and transforms everything it touches.

For example, a report that, in the past, would have taken a week or two to complete, mostly because of the research required, now took a day or so. Procurement Action Lead Times (PALT) realized significant improvements since information previously only available in paper form was now provided on-line. At the same time, systems were now able to handle greater volumes of demand. As a result, customers’ expectations changed so much that they no longer felt that they had to hold back requests for fear of overloading the system and depend on human intervention. Suppliers, seeing many commodities experiencing steady and stable growth, reverted to just-in-time manufacturing.

Over time, typing pools and secretarial staffs, the former being commonplace well into the 1980s and the latter into the 1990s, except as symbols of privilege or prestige, disappeared. Middle management and many support staffs followed this trend in the early 2000s. Today, consulting services consisting of staffing personnel to apply non-value added manual solutions such as Excel spreadsheets and PowerPoint slides to display data that has already been captured and processed, still manage to hold on in isolated pockets. That this model is not sustainable nor efficient should be obvious except for the continued support these models lend to the self-serving concept of “tools.”

Thus, the next step in the alignment of data capture and utilization to organizational vision is the interplay between our models. Practical experience suggests, though anecdotal, that as forward-facing organizations adopt more powerful digitized technologies designed to capture more and larger datasets, and to better utilize that data, that they tend to move to expand their self-awareness–their Informational Johari Window.

This, in turn, allows them to distinguish between structured and unstructured data and the value–the qualitative information content–of these datasets. This knowledge is then applied to reduce the labor and custom code required for larger data capture and utilization. In the end, these developments then determine what is the art of the possible by moving and expanding the Informational Overton Window.

Combining these concepts from a data perspective results in a combined model as illustrated below from the perspective of the subject:

Data Window of Perception and Possibility (Subject)

Extending this concept to the external subject (object or others) results in the following:

Data Window of Perception and Possibility (Object or Others)

This simplistic model describes several ways of looking at the problem of data and how to align it with its use to serve our purposes. When we gather data from the world the result can be symmetrical or asymmetrical. That is, each of us does not have the capacity to collect the same data that may be relevant to our existence or the survival of our organizations or institutions.

This same concept of symmetry and asymmetry applies to our ability to process data into information and–further–to properly apply information to when it will contribute to a decisive outcome in terms of knowledge, understanding, insight, or action.

As with the psychological Johari Window, our model takes it account the unknown within the much larger data space. Think of our Big Blue Ball (which is not so big) within the context of space. All of space represents the data of the universe. We are finding that the secrets of vast space-time are found in quanta as well in the observations of large and distant celestial events and objects. Data is everywhere. Yet, we can perceive only a small part of the universe. That is why our Data Window does not encompass the entire data space.

The quadrants, of course, are rarely co-equal, but for purposes of simplicity they are shown as such. As with the psychological Johari Window of self-awareness, the tension and conflict within the individual and its relationship with the external world is in the adjustment of the sizes of the quadrants that, hopefully, tend toward more self-awareness and openness. From the perspective of data, the equivalent is toward the expansion of the physical expansion of the Data Window while the quadrants within the window expand to minimize asymmetry of external knowledge and the unknown.

The physical limitations of symmetry, asymmetry, and the unknown portions of the data space is further limited by our perceptions. Our understanding of what is possible, acceptable, sensible, radical, unthinkable, and impossible is influenced by these perceptions. Those areas of information management that fall within some mean or midpoint of the limitations of our perceptions represent current practice and which, as with the original Johari Window, I label as “policy,” though a viable alternative label would be “practice.”

Note that there perceptions vary by the position of the subject. In the case of our own perceptions, as for those reading this post, the first variation of the model is aligned vertically. For the case of the perceptions of others, which are important in understanding their position when advocating a particular course of action, the perception model is aligned horizontally across the quadrants.

The interplay of the quadrants within the Data Window directly affect how we perceive the use of data and its potential. Thus, I have labeled the no-man’s-land portion that pushes into areas that are unknown to the subject and external object is labeled as “The Frontier.”

To an American a “frontier” is an unexplored country while, historically, in the Old World a “frontier” is a border. The former promises not only risk, but, also opportunity and invites exploration. The latter is a limitation. No doubt, my use of the term is culturally biased to the first definition.

Intellectually and physically, as we enter the frontier and learn what secrets await us there, we learn. For data we may first see a Repository of Babel and deal with it as if it were flat. But, given enough exploration we will learn its lexicon and underlying structure and, eventually, learn how to process it into information and harness its content. This, in turn, will influence the size of the Data Window, the relative sizes of the quadrants, and our perceptions of the art of the possible.

Conception to Application

This model, I believe, is a useful antecedent concept in approaching and making comprehensible what is often called Big Data. The model also helps us be more precise in how we perceive and define the term as technology changes, given that exponential increases in hardware storage and processing capabilities expand our Data Window.

Furthermore, understanding the interplay of how wee approach data, and the consequences of our perceptions of it, allow us to weigh the risk when looking at new technologies and the characteristics they need to possess in order to meet organizational goals and vision. The initial bias, as noted by Paul Kahneman in his book Thinking, Fast and Slow, is for people to stick with the status quo or the familiar–the devil they know–in lieu of something new and innovative, even when the advantages of adoption of the new innovation are clearly obvious. It requires a reorientation of thinking to allow the acceptance of the new.

Our familiar patterns when thinking about information is to look for solutions that are “tools.” The new, unfamiliar concept that we find challenging is the understanding that we do not know what we do not know when it come to data and its potential–that we must push into the frontier in order to do so–and doing so will require not only new technology that is oriented toward the optimization of data, its processing from information to knowledge, and its use, but also a new way of thinking about it and how it will align with our organizational strategy.

This can only be done by first starting with a benchmark–to practically take stock–of where we individually as organizations and where we need to be in terms of understanding our mission or purpose. For project controls and project management there is no area more at odds with this alignment.

Recently, Dave Gordon in his blog The Practicing IT Project Manager argued why project managers needed to align their projects with organizational strategy. He noted that in 2015, during the development of the “Talent Triangle” that the Project Management Institute found that a major deficiency noted by organizations was that project managers needed to take an active role in aligning their projects with organizational strategy.

As I previously noted, there are a number of project management tools on the market today and a number of data visualization tools. Yet, there are significant gaps not only in the capture, quality, and processing of data, but also in the articulation of a consistent data strategy that aligns with the project organization and the overarching organization’s business strategy, goals, and priorities.

For example, in government, program managers spend a large portion of the year defending their programs to show that they are effectively and efficiently overseeing the expenditure of resources: that they are “executing program.” Failure to execute program will result in a budget mark, or worse, result in a re-baseline, or possible restructuring or cancellation. Projected production may be scaled back in favor of more immediate priorities.

Yet, none of our so-called “tools” fully capture program execution as it is defined by agencies and Congress. We have performance management tools, earned value tools, and the list can go on. A typical program manager in government spends almost five months assessing and managing program execution, and defending program and only a few minutes each month reviewing performance. This fact alone should be indicative that our priorities are misaligned.

The intersection of organizational alignment and program management in this case is related to resource utilization and program execution. No doubt, project controls and performance management contribute to our understanding of program execution, but they are removed from informing both the program manager and the organization in a comprehensive manner about execution, risk, and opportunity–and whether those elements conflict with or align with the agency’s goals. They are even further removed from an understanding of decisions related to program execution on the interrelationships across spectrum of the project and program portfolio.

The reason for this condition is that the data is currently not being captured and processed in a comprehensive manner to be positioned for its effective exploitation and utilization in meeting the needs of the various levels of the organization, nor does the perception of the specific data needed align with organizational needs.

Correspondingly, in construction and upstream oil and gas, project managers and stakeholders are most concerned with scope, timeliness, and the inevitable questions of claims–especially the avoidance or equitable settlement of the last.

As with government, our data strategy must align with our organizational goals and vision from the perspective of all stakeholders in the effort. At the heart of this alignment is data and those technologies “fitted” to exploit it and align it with our needs.