Rear View Mirror — Correcting a Project Management Fallacy

“The past is never dead. It’s not even past.” —  William Faulkner, Requiem for a Nun

Over the years I and others have briefed project managers on project performance using KPPs, earned value management, schedule analysis, business analytics, and what we now call predictive analytics. Oftentimes, some set of figures will be critiqued as being ineffective or unhelpful; that the analytics “only look in the rear view mirror” and that they “tell me what I already know.”

In approaching this critique, it is useful to understand Faulkner’s oft-cited quote above.  When we walk down a street, let us say it is a busy city street in any community of good size, we are walking in the past.  The moment we experience something it is in the past.  If we note the present condition of our city street we will see that for every building, park, sidewalk, and individual that we pass on that sidewalk, each has a history.  These structures and the people are as much driven by their pasts as their expectations for the future.

Now let us take a snapshot of our street.  In doing so we can determine population density, ethnic demographics, property values, crime rate, and numerous other indices and parameters regarding what is there.  No doubt, if we stop here we are just “looking in the rear view mirror” and noting what we may or may not know, however certain our anecdotal filter.

Now, let us say that we have an affinity for this street and may want to live there.  We will take the present indices and parameters that noted above, which describe our geographical environment, and trend it.  We may find that housing pricing are rising or falling, that crime is rising or falling, etc.  If we delve into the street’s ownership history we may find that one individual or family possesses more than one structure, or that there is a great deal of diversity.  We may find that a Superfund site is not too far away.  We may find that economic demographics are pointing to stagnation of the local economy, or that the neighborhood is becoming gentrified.  Just by time-phasing and delving into history–by mapping out the trends and noting the significant historical background–provides us with enough information to inform us about whether our affinity is grounded in reality or practicality.

But let us say that, despite negatives, we feel that this is the next up-and-coming neighborhood.  We would need signs to make that determination.  For example, what kinds of businesses have moved into the neighborhood and what is their number?  What demographic do they target?  There are many other questions that can be asked to see if our economic analysis is valid–and that analysis would need to be informed by risk.

The fact of the matter is that we are always living with the past: the cumulative effect of the past actions of numerous individuals, including our own, and organizations, groups of individuals, and institutions; not to mention larger economic forces well beyond our control.  Any desired change in the trajectory of the system being evaluated must identify those elements that can be impacted or influenced, and an analysis of the effort that must be expended to bring about the change, is also essential.

This is a scientific fact, proven countless times by physics, biology, and other disciplines.  A deterministic universe, which provides for some uncertainty at any given point at our level of existence, drives the possible within very small limits of possibility and even smaller limits of probability.  What this means in plain language is that the future is usually a function of the past.

Any one number or index, no doubt, does not necessarily tell us something important.  But it could if it is relevant, material, and prompts further inquiry essential to project performance.

For example, let us look at an integrated master schedule that underlies a typical medium-sized project.

 

We will select a couple of metrics that indicates project schedule performance.  In the case below we are looking at task hits and misses and Baseline Execution Index, a popular index that determines efficiency in meeting baseline schedule planning.

Note that the chart above plots the performance over time.  What will it take to improve our efficiency?  So as a quick logic check on realism, let’s take a look at the work to date with all of the late starts and finishes.

Our bow waves track the cumulative effort to date.  As we work to clear missed starts or missed finishes in a project we also must devote resources to the accomplishment of current work that is still in line with the baseline.  What this means is that additional resources may need to be devoted to particular areas of work accomplishment or risk handling.

This is not, of course, the limit to our analysis that should be undertaken.  The point here is that at every point in history in every system we stand at a point of the cumulative efforts, risk, failure, success, and actions of everyone who came before us.  At the microeconomic level this is also true within our project management systems.  There are also external constraints and influences that will define the framing assumptions and range of possibilities and probabilities involved in project outcomes.

The shear magnitude of the bow waves that we face in all endeavors will often be too great to fully overcome.  As an analogy, a bow wave in complex systems is more akin to a tsunami as opposed to the tidal waves that crash along our shores.  All of the force of all of the collective actions that have preceded present time will drive our trajectory.

This is known as inertia.

Identifying and understanding the contributors to the inertia that is driving our performance is important to knowing what to do.  Thus, looking in the rear view mirror is important and not a valid argument for ignoring an inconvenient metric that may only require additional context.  Furthermore, knowing where we sit is important and not insignificant.  Knowing the factors that put us where we are–and the effort that it will take to influence our destiny–will guide what is possible and not possible in our future actions.

Note:  All charted data is notional and is not from an actual project.

Post-Blogging NDIA Blues — The Latest News (Project Management Wonkish)

The National Defense Industrial Association’s Integrated Program Management Division (NDIA IPMD) just had its quarterly meeting here in sunny Orlando where we braved the depths of sub-60 degrees F temperatures to start out each day.

For those not in the know, these meetings are an essential coming together of policy makers, subject matter experts, and private industry practitioners regarding the practical and mundane state-of-the-practice in complex project management, particularly focused on the concerns of the the federal government and the Department of Defense.  The end result of these meetings is to publish white papers and recommendations regarding practice to support continuous process improvement and the practical application of project management practices–allowing for a cross-pollination of commercial and government lessons learned.  This is also the intersection where innovation among the large and small are given an equal vetting and an opportunity to introduce new concepts and solutions.  This is an idealized description, of course, and most of the petty personality conflicts, competition, and self-interest that plagues any group of individuals coming together under a common set of interests also plays out here.  But generally the days are long and the workshops generally produce good products that become the de facto standard of practice in the industry. Furthermore the control that keeps the more ruthless personalities in check is the fact that, while it is a large market, the complex project management community tends to be a relatively small one, which reinforces professionalism.

The “blues” in this case is not so much borne of frustration or disappointment but, instead, from the long and intense days that the sessions offer.  The biggest news from an IT project management and application perspective was twofold. The data stream used by the industry in sharing data in an open systems manner will be simplified.  The other was the announcement that the technology used to communicate will move from XML to JSON.

Human readable formatting to Data-focused formatting.  Under Kendall’s Better Buying Power 3.0 the goal of the Department of Defense (DoD) has been to incorporate better practices from private industry where they can be applied.  I don’t see initiatives for greater efficiency and reduction of duplication going away in the new Administration, regardless of what a new initiative is called.

In case this is news to you, the federal government buys a lot of materials and end items–billions of dollars worth.  Accountability must be put in place to ensure that the money is properly spent to acquire the things being purchased.  Where technology is pushed and where there are no commercial equivalents that can be bought off the shelf, as in the systems purchased by the Department of Defense, there are measures of progress and performance (given that the contract is under a specification) that are submitted to the oversight agency in DoD.  This is a lot of data and to be brutally frank the method and format of delivery has been somewhat chaotic, inefficient, and duplicative.  The Department moved to address this by a somewhat modest requirement of open systems submission of an application-neutral XML file under the standards established by the UN/CEFACT XML organization.  This was called the Integrated Program Management Report (IMPR).  This move garnered some improvement where it has been applied, but contracts are long-term, so incorporating improvements though new contractual requirements tends to take time.  Plus, there is always resistance to change.  The Department is moving to accelerate addressing these inefficiencies in their data streams by eliminating the unnecessary overhead associated with specifications of formatting data for paper forms and dealing with data as, well, data.  Great idea and bravo!  The rub here is that in making the change, the Department has proposed dropping XML as the technology used to transfer data and move to JSON.

XML to JSON. Before I spark another techie argument about the relative merits of each, there are some basics to understand here.  First, XML is a language, JSON is simply data exchange format.  This means that XML is specifically designed to deal with hierarchical and structured data that can be queried and where validation and fidelity checks within the data are inherent in the technology. Furthermore, XML is known to scale while maintaining the integrity of the data, which is intended for use in relational databases.  Furthermore, XML is hard to break.  It is meant for editing and will maintain its structure and integrity afterward.

The counter argument encountered is that JSON is new! and uses fewer characters! (which usually turns out to be inconsequential), and people are talking about it for Big Data and NoSQL! (but this happened after the fact and the reason for shoehorning it this way is discussed below).

So does it matter?  Yes and no.  As a supplier specializing in delivering solutions that normalize and rationalize data across proprietary file structures and leverage database capabilities, I don’t care.  I can adapt quickly and will have a proof-of-concept solution out within 30 days of receiving the schema.

The risk here, which applies to DoD and the industry, is that the decision to go to JSON is made only because it is the shiny new thing used by gamers and social networking developers.  There has also been a move to adapt to other uses because of the history of significant security risks that had been found in Java, so much so that an entire Wikipedia page is devoted to them.  Oracle just killed off Java applets, though Java hangs on.  JSON, of course, isn’t Java, but it was designed from birth as JavaScript Object Notation (hence the acronym JSON), with the purpose of handling relatively small bits of data across web servers in a number of proprietary settings.

To address JSON deficiencies relative to XML, a number of tools have been and are being developed to replicate the fidelity and reliability found in XML.  Whether this is sufficient to be effective against a structured LANGUAGE is to be seen.  Much of the overhead that technies complain about in XML is due to the native functionality related to the power it brings to the table.  No doubt, a bicycle is simpler than a Formula One racer–and this is an apt comparison.  Claiming “simpler” doesn’t pass the “So What?” test knowing the business processes involved.  The technology needs to be fit to the solution.  The purpose of data transmission using APIs is not only to make it easy to produce but for it to–you know–achieve the goals of normalization and rationalization so that it can be used on the receiving end which is where the consumer (which we usually consider to be the customer) sits.

At the end of the day the ability to scale and handle hierarchical, structured data will rely on the quality and strength of the schema and the tools that are published to enforce its fidelity and compliance.  Otherwise consuming organizations will be receiving a dozen different proprietary JSON files, and that does not address the present chaos but simply adds to it.  These issues were aired out during the meeting and it seems that everyone is aware of the risks and that they can be addressed.  Furthermore, as the schema is socialized across solutions providers, it will be apparent early if the technology will be able handle the project performance data resulting from the development of a high performance aircraft or a U.S. Navy destroyer.

Something New (Again)– Top Project Management Trends 2017

Atif Qureshi at Tasque, which I learned via Dave Gordon’s blog, went out to LinkedIn’s Project Management Community to ask for the latest tends in project management.  You can find the raw responses to his inquiry at his blog here.  What is interesting is that some of these latest trends are much like the old trends which, given continuity makes sense.  But it is instructive to summarize the ones that came up most often.  Note that while Mr. Qureshi was looking for ten trends, and taken together he definitely lists more than ten, there is a lot of overlap.  In total the major issues seem to the five areas listed below.

a.  Agile, its hybrids, and its practical application.

It should not surprise anyone that the latest buzzword is Agile.  But what exactly is it in its present incarnation?  There is a great deal of rising criticism, much of it valid, that it is a way for developers and software PMs to avoid accountability. Anyone ready Glen Alleman’s Herding Cat’s Blog is aware of the issues regarding #NoEstimates advocates.  As a result, there are a number hybrid implementations of Agile that has Agile purists howling and non-purists adapting as they always do.  From my observations, however, there is an Ur-Agile that is out there common to all good implementations and wrote about them previously in this blog back in 2015.  Given the time, I think it useful to repeat it here.

The best articulation of Agile that I have read recently comes from Neil Killick, whom I have expressed some disagreement on the #NoEstimates debate and the more cultish aspects of Agile in past posts, but who published an excellent post back in July (2015) entitled “12 questions to find out: Are you doing Agile Software Development?”

Here are Neil’s questions:

  1. Do you want to do Agile Software Development? Yes – go to 2. No – GOODBYE.
  2. Is your team regularly reflecting on how to improve? Yes – go to 3. No – regularly meet with your team to reflect on how to improve, go to 2.
  3. Can you deliver shippable software frequently, at least every 2 weeks? Yes – go to 4. No – remove impediments to delivering a shippable increment every 2 weeks, go to 3.
  4. Do you work daily with your customer? Yes – go to 5. No – start working daily with your customer, go to 4.
  5. Do you consistently satisfy your customer? Yes – go to 6. No – find out why your customer isn’t happy, fix it, go to 5.
  6. Do you feel motivated? Yes – go to 7. No – work for someone who trusts and supports you, go to 2.
  7. Do you talk with your team and stakeholders every day? Yes – go to 8. No – start talking with your team and stakeholders every day, go to 7.
  8. Do you primarily measure progress with working software? Yes – go to 9. No – start measuring progress with working software, go to 8.
  9. Can you maintain pace of development indefinitely? Yes – go to 10. No – take on fewer things in next iteration, go to 9.
  10. Are you paying continuous attention to technical excellence and good design? Yes – go to 11. No – start paying continuous attention to technical excellent and good design, go to 10.
  11. Are you keeping things simple and maximising the amount of work not done? Yes – go to 12. No – start keeping things simple and writing as little code as possible to satisfy the customer, go to 11.
  12. Is your team self-organising? Yes – YOU’RE DOING AGILE SOFTWARE DEVELOPMENT!! No – don’t assign tasks to people and let the team figure out together how best to satisfy the customer, go to 12.

Note that even in software development based on Agile you are still “provid(ing) value by independently developing IP based on customer requirements.”  Only you are doing it faster and more effectively.

With the possible exception of the “self-organizing” meme, I find that items through 11 are valid ways of identifying Agile.  Given that the list says nothing about establishing closed-loop analysis of progress says nothing about estimates or the need to monitor progress, especially on complex projects.  As a matter of fact one of the biggest impediments noted elsewhere in industry is the inability of Agile to scale.  This limitations exists in its most simplistic form because Agile is fine in the development of well-defined limited COTS applications and smartphone applications.  It doesn’t work so well when one is pushing technology while developing software, especially for a complex project involving hundreds of stakeholders.  One other note–the unmentioned emphasis in Agile is technical performance measurement, since progress is based on satisfying customer requirements.  TPM, when placed in the context of a world of limited resources, is the best measure of all.

b.  The integration of new technology into PM and how to upload the existing PM corporate knowledge into that technology.

This is two sides of the same coin.  There is always  debate about the introduction of new technologies within an organization and this debate places in stark contrast the differences between risk aversion and risk management.

Project managers, especially in the complex project management environment of aerospace & defense tend, in general, to be a hardy lot.  Consisting mostly of engineers they love to push the envelope on technology development.  But there is also a stripe of engineers among them that do not apply this same approach of measured risk to their project management and business analysis system.  When it comes to tracking progress, resource management, programmatic risk, and accountability they frequently enter the risk aversion mode–believing that the less eyes on what they do the more leeway they have in achieving the technical milestones.  No doubt this is true in a world of unlimited time and resources, but that is not the world in which we live.

Aside from sub-optimized self-interest, the seeds of risk aversion come from the fact that many of the disciplines developed around performance management originated in the financial management community, and many organizations still come at project management efforts from perspective of the CFO organization.  Such rice bowl mentality, however, works against both the project and the organization.

Much has been made of the wall of honor for those CIA officers that have given their lives for their country, which lies to the right of the Langley headquarters entrance.  What has not gotten as much publicity is the verse inscribed on the wall to the left:

“And ye shall know the truth and the truth shall make you free.”

      John VIII-XXXII

In many ways those of us in the project management community apply this creed to the best of our ability to our day-to-day jobs, and it lies as the basis for all of the management improvement from Deming’s concept of continuous process improvement, through the application of Six Sigma and other management improvement methods.  What is not part of this concept is that one will apply improvement only when a customer demands it, though they have asked politely for some time.  The more information we have about what is happening in our systems, the better the project manager and the project team is armed with applying the expertise which qualified the individuals for their jobs to begin with.

When it comes to continual process improvement one does not need to wait to apply those technologies that will improve project management systems.  As a senior management (and well-respected engineer) when I worked in Navy told me; “if my program managers are doing their job virtually every element should be in the yellow, for only then do I know that they are managing risk and pushing the technology.”

But there are some practical issues that all managers must consider when managing the risks in introducing new technology and determining how to bring that technology into existing business systems without completely disrupting the organization.  This takes–good project management practices that, for information systems, includes good initial systems analysis, identification of those small portions of the organization ripe for initial entry in piloting, and a plan of data normalization and rationalization so that corporate knowledge is not lost.  Adopting systems that support more open systems that militate against proprietary barriers also helps.

c.  The intersection of project management and business analysis and its effects.

As data becomes more transparent through methods of normalization and rationalization–and the focus shifts from “tools” to the knowledge that can be derived from data–the clear separation that delineated project management from business analysis in line-and-staff organization becomes further blurred.  Even within the project management discipline, the separation in categorization of schedule analysts from cost analysts from financial analyst are becoming impediments in fully exploiting the advantages in looking at all data that is captured and which affects project performance.

d.  The manner of handling Big Data, business intelligence, and analytics that result.

Software technologies are rapidly developing that break the barriers of self-contained applications that perform one or two focused operations or a highly restricted group of operations that provide functionality focused on a single or limited set of business processes through high level languages that are hard-coded.  These new technologies, as stated in the previous section, allow users to focus on access to data, making the interface between the user and the application highly adaptable and customizable.  As these technologies are deployed against larger datasets that allow for integration of data across traditional line-and-staff organizations, they will provide insight that will garner businesses competitive advantages and productivity gains against their contemporaries.  Because of these technologies, highly labor-intensive data mining and data engineering projects that were thought to be necessary to access Big Data will find themselves displaced as their cost and lack of agility is exposed.  Internal or contracted out custom software development devoted along these same lines will also be displaced just as COTS has displaced the high overhead associated with these efforts in other areas.  This is due to the fact that hardware and processes developments are constantly shifting the definition of “Big Data” to larger and larger datasets to the point where the term will soon have no practical meaning.

e.  The role of the SME given all of the above.

The result of the trends regarding technology will be to put the subject matter expert back into the driver’s seat.  Given adaptive technology and data–and a redefinition of the analyst’s role to a more expansive one–we will find that the ability to meet the needs of functionality and the user experience is almost immediate.  Thus, when it comes to business and project management systems, the role of Agile, while these developments reinforce the characteristics that I outlined above are made real, the weakness of its applicability to more complex and technical projects is also revealed.  It is technology that will reduce the risk associated with contract negotiation, processes, documentation, and planning.  Walking away from these necessary components to project management obfuscates and avoids the hard facts that oftentimes must be addressed.

One final item that Mr. Qureshi mentions in a follow-up post–and which I have seen elsewhere in similar forums–concerns operational security.  In deployment of new technologies a gatekeeper must be aware of whether that technology will not open the organization’s corporate knowledge to compromise.  Given the greater and more integrated information and knowledge garnered by new technology, as good managers it is incumbent to ensure these improvements do not translate into undermining the organization.

Takin’ Care of Business — Information Economics in Project Management

Neoclassical economics abhors inefficiency, and yet inefficiencies exist.  Among the core issues that create inefficiencies is the asymmetrical nature of information.  Asymmetry is an accepted cornerstone of economics that leads to inefficiency.  We can see in our daily lives and employment the effects of one party in a transaction having more information than the other:  knowing whether the used car you are buying is a lemon, measuring risk in the purchase of an investment and, apropos to this post, identifying how our information systems allow us to manage complex projects.

Regarding this last proposition we can peel this onion down through its various levels: the asymmetry in the information between the customer and the supplier, the asymmetry in information between the board and stockholders, the asymmetry in information between management and labor, the asymmetry in information between individual SMEs and the project team, etc.–it’s elephants all the way down.

This asymmetry, which drives inefficiency, is exacerbated in markets that are dominated by monopoly, monopsony, and oligopoly power.  When informed by the work of Hart and Holmström regarding contract theory, which recently garnered the Nobel in economics, we have a basis for understanding the internal dynamics of projects in seeking efficiency and productivity.  What is interesting about contract theory is that it incorporates the concept of asymmetrical information (labeled as adverse selection), but expands this concept in human transactions at the microeconomic level to include considerations of moral hazard and the utility of signalling.

The state of asymmetry and inefficiency is exacerbated by the patchwork quilt of “tools”–software applications that are designed to address only a very restricted portion of the total contract and project management system–that are currently deployed as the state of the art.  These tend to require the insertion of a new class of SME to manage data by essentially reversing the efficiencies in automation, involving direct effort to reconcile differences in data from differing tools. This is a sub-optimized system.  It discourages optimization of information across the project, reinforces asymmetry, and is economically and practically unsustainable.

The key in all of this is ensuring that sub-optimal behavior is discouraged, and that those activities and behaviors that are supportive of more transparent sharing of information and, therefore, contribute to greater efficiency and productivity are rewarded.  It should be noted that more transparent organizations tend to be more sustainable, healthier, and with a higher degree of employee commitment.

The path forward where there is monopsony power, where there is a dominant buyer, is to impose the conditions for normative behavior that would otherwise be leveraged through practice in a more open market.  For open markets not dominated by one player as either supplier or seller, instituting practices that reward behavior that reduces the effects of asymmetrical information, and contracting disincentives in business transactions on the open market is the key.

In the information management market as a whole the trends that are working against asymmetry and inefficiency involve the reduction of data streams, the construction of cross-domain data repositories (or reservoirs) that allow for the satisfaction of multiple business stakeholders, and the introduction of systems that are more open and adaptable to the needs of the project system in lieu of a limited portion of the project team.  These solutions exist, yet their adoption is hindered because of the long-term infrastructure that is put in place in complex project management.  This infrastructure is supported by incumbents that are reinforcing to the status quo.  Because of this, from the time a market innovation is introduced to the time that it is adopted in project-focused organizations usually involves the expenditure of several years.

This argues for establishing an environment that is more nimble.  This involves the adoption of a series of approaches to achieve the goals of broader information symmetry and efficiency in the project organization.  These are:

a. Instituting contractual relationships, both internally and externally, that encourage project personnel to identify risk.  This would include incentives to kill efforts that have breached their framing assumptions, or to consolidate progress that the project has achieved to date–sending it as it is to production–while killing further effort that would breach framing assumptions.

b. Institute policy and incentives on the data supply end to reduce the number of data streams.  Toward this end both acquisition and contracting practices should move to discourage proprietary data dead ends by encouraging normalized and rationalized data schemas that describe the environment using a common or, at least, compatible lexicon.  This reduces the inefficiency derived from opaqueness as it relates to software and data.

c.  Institute policy and incentives on the data consumer end to leverage the economies derived from the increased computing power from Moore’s Law by scaling data to construct interrelated datasets across multiple domains that will provide a more cohesive and expansive view of project performance.  This involves the warehousing of data into a common repository or reduced set of repositories.  The goal is to satisfy multiple project stakeholders from multiple domains using as few streams as necessary and encourage KDD (Knowledge Discovery in Databases).  This reduces the inefficiency derived from data opaqueness, but also from the traditional line-and-staff organization that has tended to stovepipe expertise and information.

d.  Institute acquisition and market incentives that encourage software manufacturers to engage in positive signalling behavior that reduces the opaqueness of the solutions being offered to the marketplace.

In summary, the current state of project data is one that is characterized by “best-of-breed” patchwork quilt solutions that tend to increase direct labor, reduces and limits productivity, and drives up cost.  At the end of the day the ability of the project to handle risk and adapt to technical challenges rests on the reliability and efficiency of its information systems.  A patchwork system fails to meet the needs of the organization as a whole and at the end of the day is not “takin’ care of business.”

River Deep, Mountain High — A Matrix of Project Data

Been attending conferences and meetings of late and came upon a discussion of the means of reducing data streams while leveraging Moore’s Law to provide more, better data.  During a discussion with colleagues over lunch they asked if asking for more detailed data would provide greater insight.  This led to a discussion of the qualitative differences in data depending on what information is being sought.  My response to more detailed data was to respond: “well there has to be a pony in there somewhere.”  This was greeted by laughter, but then I finished the point: more detailed data doesn’t necessarily yield greater insight (though it could and only actually looking at it will tell you that, particularly in applying the principle of KDD).  But more detailed data that is based on a hierarchical structure will, at the least, provide greater reliability and pinpoint areas of intersection to detect areas of risk manifestation that is otherwise averaged out–and therefore hidden–at the summary levels.

Not to steal the thunder of new studies that are due out in the area of data later this spring but, for example, I am aware after having actually achieved lowest level integration for extremely complex projects through my day job, that there is little (though not zero) insight gained in predictive power between say, the control account level of a WBS and the work package level.  Going further down to element of cost may, in the words of the character in the movie Still Alice, where “You may say that this falls into the great academic tradition of knowing more and more about less and less until we know everything about nothing.”  But while that may be true for project management, that isn’t necessarily so when collecting parametrics and auditing the validity of financial information.

Rolling up data from individually detailed elements of a hierarchy is the proper way to ensure credibility.  Since we are at the point where a TB of data has virtually the same marginal cost of a GB of data (which is vanishingly small to begin with), then the more the merrier in eliminating the abuse associated with human-readable summary reporting.  Furthermore, I have long proposed through this blog and elsewhere, that the emphasis should be away from people, process, and tools, to people, process, and data.  This rightly establishes the feedback loop necessary for proper development and project management.  More importantly, the same data available through project management processes satisfy the different purposes of domains both within the organization, and of multiple external stakeholders.

This then leads us to the concept of integrated project management (IPM), which has become little more than a buzz-phrase, and receives a lot of hand waves, mostly by technology companies that want to push their tools–which are quickly becoming obsolete–while appearing forward leaning.  This tool-centric approach is nothing more than marketing–focusing on what the software manufacturer would have us believe is important based on the functionality baked into their applications.  One can see where this could be a successful approach, given the emphasis on tools in the PM triad.  But, of course, it is self-limiting in a self-interested sort of way.  The emphasis needs to be on the qualitative and informative attributes of available data–not of tool functionality–that meet the requirements of different data consumers while minimizing, to the extent possible, the number of data streams.

Thus, there are at least two main aspects of data that are important in understanding the utility of project management: early warning/predictiveness and credibility/traceability/fidelity.  The chart attached below gives a rough back-of-the-envelope outline of this point, with some proposed elements, though this list is not intended to be exhaustive.

PM Data Matrix

PM Data Matrix

In order to capture data across the essential elements of project management, our data must demonstrate both a breadth and depth that allows for the discovery of intersections of the different elements.  The weakness in the two-dimensional model above is that it treats each indicator by itself.  But, when we combine, for example, IMS consecutive slips with other elements listed, the informational power of the data becomes many times greater.  This tells us that the weakness in our present systems is that we treat the data as a continuity between autonomous elements.  But we know that the project consists of discontinuities where the next level of achievement/progress is a function of risk.  Thus, when we talk about IPM, the secret is in focusing on data that informs us what our systems are doing.  This will require more sophisticated types of modeling.

Technical Ecstacy — Technical Performance and Earned Value

As many of my colleagues in project management know, I wrote a series of articles on the application of technical performance risk in project management back in 1997, one of which made me an award recipient from the institution now known as Defense Acquisition University.  Over the years various researchers and project organizations have asked me if I have any additional thoughts on the subject and the response up until now has been: no.  From a practical standpoint, other responsibilities took me away from the domain of determining the best way of recording technical achievement in complex projects.  Furthermore, I felt that the field was not ripe for further development until there were mathematics and statistical methods that could better approach the behavior of complex adaptive systems.

But now, after almost 20 years, there is an issue that has been nagging at me since publication of the results of the project studies that I led from 1995 through 1997.  It is this: the complaint by project managers in resisting the application of measuring technical achievement of any kind, and integrating it with cost performance, the best that anyone can do is 100%.  “All TPM can do is make my performance look worse”, was the complaint.  One would think this observation would not only not face opposition, especially from such an engineering dependent industry, but also because, at least in this universe, the best you can do is 100%.*  But, of course, we weren’t talking about the same thing and I have heard this refrain again at recent conferences and meetings.

To be honest, in our recommended solution in 1997, we did not take things as far as we could have.  It was always intended to be the first but not the last word regarding this issue.  And there have been some interesting things published about this issue recently, which I noted in this post.

In the discipline of project management in general, and among earned value practitioners in particular, the performance being measured oftentimes exceeds 100%.  But there is the difference.  What is being measured as exceeding 100% is progress against both a time-based and fiscally-based linear plan.  Most of the physical world doesn’t act nor can it be measured this way.  When measuring the attributes of a system or component against a set of physical or performance thresholds, linearity against a human-imposed plan oftentimes goes out the window.

But a linear progression can be imposed on the development toward the technical specification.  So then the next question is how do we measure progress during the development curve and duration.

The short answer, without repeating a summarization of the research (which is linked above) is through risk assessment, and the method that we used back in 1997 was a distribution curve that determined the probability of reaching the next step in the technical development.  This was based on well-proven systems engineering techniques that had been used in industry for many years, particularly at pre-Lockheed Martin Martin Marietta.  Technical risk assessment, even using simplistic 0-50-80-100 curves, provides a good approximation of probability and risk between each increment of development, though now there are more robust models.  For example, the use of Bayesian methodology, which introduces mathematical rigor into statistics, as outlined in this post by Eliezer Yudkowsky.  (As an aside, I strongly recommend his blogs for anyone interested in the cutting edge of rational inquiry and AI).

So technical measurement is pretty well proven.  But the issue that then presents itself (and presented itself in 1997) was how to derive value from technical performance.  Value is a horse of a different color.  The two bugaboos that were presented as being impassible roadblocks were weight and test failure.

Let’s take weight first.  On one of my recent trips I found myself seated in an Embraer E-jet.  These are fairly small aircraft, especially compared to conventional commercial aircraft, and are lightweight.  As such, they rely on a proper distribution and balance of weight, especially if one finds oneself at 5,000 feet above sea level with the long runway shut down, a 10-20 mph crosswind, and a mountain range rising above the valley floor in the direction of takeoff.  So the flight crew, when the cockpit noted a weight disparity, shifted baggage from belly stowage to the overhead compartments in the main cabin.  What was apparent is that weight is not an ad hoc measurement.  The aircraft’s weight distribution and tolerances are documented–and can be monitored as part of operations.

When engineering an aircraft, each component is assigned its weight.  Needless to say, weight is then allocated and measured as part of the development of subsystems of the aircraft.  One would not measure the overall weight of the aircraft or end item without ensuring that the components and subsystems did not conform to the weight limitations.  The overall weight limitation of an aircraft will very depending on mission and use.  If a commercial-type passenger airplane built to takeoff and land from modern runways, weight limitations are not as rigorous.  If the aircraft in question is going to takeoff and land from a carrier deck at sea then weight limitations become more critical.  (Side note:  I also learned these principles in detail while serving on active duty at NAS Norfolk and working with the Navy Air Depot there).  Aside from aircraft weight is important in a host of other items–from laptops to ships.  In the latter case, of which I am also intimately familiar, weight is important in balancing the ship and its ability to make way in the water (and perform its other missions).

So given that weight is an allocated element of performance within subsystem or component development, we achieve several useful bits of information.  First off, we can aggregate and measure weight of the entire end item to track if we are meeting the limitations of the item.  Secondly, we can perform trade-off.  If a subsystem or component can be made with a lighter material or more efficiently weight-wise, then we have more leeway (maybe) somewhere else.  Conversely, if we need weight for balance and the component or subsystem is too light, we need to figure out how to add weight or ballast.  So measuring and recording weight is not a problem. Finally, we allocate and tie performance-wise a key technical specification to the work, avoiding subjectivity.

So how to do we show value?  We do so by applying the same principles as any other method of earned value.  Each item of work is covered by a Work Breakdown Structure (WBS), which is tied (hopefully) to an Integrated Master Schedule (IMS).  A Performance Management Baseline (PMB) is applied to the WBS (or sometimes thought a resource-loaded IMS).  If we have properly constructed our Integrated Management Plan (IMP) prior to the IMS, we should clearly have tied the relationship of technical measures to the structure.  I acknowledge that not every program performs an IMP, but stating so is really an acknowledgement of a clear deficiency in our systems, especially involving complex R&D programs.  Since our work is measured in short increments against a PMB, we can claim 100% of a technical specification but be ahead of plan for the WBS elements involved.

It’s not as if the engineers in our industrial activities and aerospace companies have never designed a jet aircraft or some other item before.  Quite a bit of expertise and engineering know-how transfers from one program to the next.  There is a learning curve.  The more information we collect in that regard, the more effective that curve.  Hence my emphasis in recent posts on data.

For testing, the approach is the same.  A test can fail, that is, a rocket can explode on the pad or suffer some other mishap, but the components involved will succeed or fail based on the after-action report.  At that point we will know, through allocation of the test results, where we are in terms of technical performance.  While rocket science is involved in the item’s development, recording technical achievement is not rocket science.

Thus, while our measures of effectiveness, measures of performance, measures of progress, and technical performance will determine our actual achievement against a standard, our fiscal assessment of value against the PMB can still reflect whether we are ahead of schedule and below budget.  What it takes is an understanding of how to allocate more rigorous measures to the WBS that are directly tied to the technical specifications.  To do otherwise is to build a camel when a horse was expected or–as has been recorded in real life in previous programs–to build a satellite that cannot communicate, a Navy aircraft that cannot land on a carrier deck, a ship that cannot fight, and a vaccine that cannot be delivered and administered in the method required.  We learn from our failures, and that is the value of failure.

 

*There are colloquial expressions that allow for 100% to be exceeded, such as exceeding 100% of the tolerance of a manufactured item or system, which essentially means to exceed its limits and, therefore, breaking it.

Big Time — Elements of Data Size in Scaling

I’ve run into additional questions about scalability.  It is significant to understand the concept in terms of assessing software against data size, since there are actually various aspect of approaching the issue.

Unlike situations where data is already sorted and structured as part of the core functionality of the software service being provided, this is in dealing in an environment where there are many third-party software “tools” that put data into proprietary silos.  These act as barriers to optimizing data use and gaining corporate intelligence.  The goal here is to apply in real terms the concept that the customers generating the data (or stakeholders who pay for the data) own the data and should have full use of it across domains.  In project management and corporate governance this is an essential capability.

For run-of-the-mill software “tools” that are focused on solving one problem, this often is interpreted as just selling a lot more licenses to a big organization.  “Sure we can scale!” is code for “Sure, I’ll sell you more licenses!”  They can reasonably make this assertion, particularly in client-server or web environments, where they can point to the ability of the database system on which they store data to scale.  This also comes with, usually unstated, the additional constraint that their solution rests on a proprietary database structure.  Such responses, through, are a form of sidestepping the question, nor is it the question being asked.  Thus, it is important for those acquiring the right software to understand the subtleties.

A review of what makes data big in the first place is in order.  The basic definition, which I outlined previously, came from NASA in describing data that could not be held in local memory or local storage.  Hardware capability, however, continues to grow exponentially, so that what is big data today is not big data tomorrow.  But in handling big data, it then becomes incumbent on software publishers to drive performance to allow their customers to take advantage of the knowledge contained in these larger data sets.

The elements that determine the size of data are:

a.  Table size

b.  Row or Record size

c.  Field size

d.  Rows per table

e.  Columns per table

f.  Indexes per table

Note the interrelationships of these elements in determining size.  Thus, recently I was asked how many records are being used on the largest tables being accessed by a piece of software.  That is fine as shorthand, but the other elements add to the size of the data that is being accessed.  Thus, a set of data of say 800K records may be just as “big” as one containing 2M records because of the overall table size of fields, and the numbers of columns and indices, as well as records.  Furthermore, this question didn’t take into account the entire breadth of data across all tables.

Understanding the definition of data size then leads us to understanding the nature of software scaling.  There are two aspects to this.

The first is the software’s ability to presort the data against the database in such as way as to ensure that latency–the delay in performance when the data is loaded–is minimized.  The principles applied here go back to database management practices back in the day when organizations used to hire teams of data scientists to rationalize data that was processed in machine language–especially when it used to be stored in ASCII or, for those who want to really date themselves, EBCDIC, which were incoherent by today’s generation of more human-readable friendly formats.

Quite simply, the basic steps applied has been to identify the syntax, translate it, find its equivalents, and then sort that data into logical categories that leverage database pointers.  What you don’t want the software to do is what used to be done during the earliest days of dealing with data, which was smaller by today’s standards, of serially querying ever data element in order to fetch only what the user is calling.  Furthermore, it also doesn’t make much sense to deal with all data as a Repository of Babel to apply labor-intensive data mining in non-relational databases, especially in cases where the data is well understood and fairly well structured, even if in a proprietary structure.  If we do business in a vertical where industry standards in data apply, as in the use of the UN/CEFACT XML convention, then much of the presorting has been done for us.  In addition, more powerful industry APIs (like OLE DB and ODBC) that utilize middleware (web services, XML, SOAP, MapReduce, etc.) multiply the presorting capabilities of software, providing significant performance improvements in accessing big data.

The other aspect is in the software’s ability to understand limitations in data communications hardware systems.  This is a real problem, because the backbone in corporate communication systems, especially to ensure security, is still largely done over a wire.  The investments in these backbones is usually categorized as a capital investment, and so upgrades to the system are slow.  Furthermore, oftentimes backbone systems are embedded in physical plant building structures.  So any software performance is limited by the resistance and bandwidth of wiring.  Thus, we live in a world where hardware storage and processing is doubling every 12-18 months, and software is designed to better leverage such expansion, but the wires over which data communication depends remains stuck in the past–constrained by the basic physics of CAT 6 or Fiber Optic cabling.

Needless to say, software manufacturers who rely on constant communications with the database will see significantly degraded performance.  Some software publishers who still rely on this model use the “check out” system, treating data like a lending library, where only one user or limited users can access the same data.  This, of course, reduces customer flexibility.  Strategies that are more discrete in handling data are the needed response here until day-to-day software communications can reap the benefits of physical advancements in this category of hardware.  Furthermore, organizations must understand that the big Cloud in the sky is not the answer, since it is constrained by the same physics as the rest of the universe–with greater security risks.

All of this leads me to a discussion I had with a colleague recently.  He opened his iPhone and did a query in iTunes for an album.  In about a second or so his query selected the artist and gave a list of albums–all done without a wire connection.  “Why can’t we have this in our industry?” he asked.  Why indeed?  Well, first off, Apple iTunes has sorted its data to optimize performance with its app, and it is performed within a standard data stream and optimized for the Apple iOS and hardware.  Secondly, the variables of possible queries in iTunes are predefined and tied to a limited and internally well-defined set of data.  Thus, the data and application challenges are not equivalent as found in my friend’s industry vertical.  For example, aside from the challenges of third party data normalization and rationalization, iTunes is not dealing with dynamic time-phased or trending data that requires multiple user updates to reflect changes using predictive analytics which is then served to different classes of users in a highly secure environment.  Finally, and most significantly, Apple spent more on that system than the annual budget of my friend’s organization.  In the end his question was a good one, but in discussing this it was apparent that just saying “give me this” is a form of magical thinking and hand waving.  The devil is in the details, though I am confident that we will eventually get to an equivalent capability.

At the end of the day IT project management strategy must take into account the specific needs of classes of users in making determinations of scaling.  What this means is a segmented approach: thick-client users, compartmentalized local installs with subsets of data, thin-client, and web/mobile or terminal services equivalents.  The practical solution is still an engineered one that breaks the elephant into digestible pieces that lean forward to leveraging advances in hardware, database, and software operating environments.  These are the essential building blocks to data optimization and scaling.