Take Me to the River, Part 1, Cost Elements – A Digital Inventory of Integrated Program Management Elements

In a previous post I recommended a venue focused on program managers to define what constitutes integrated program management. Since that time I have been engaged with thought leaders and influencers in both government and industry, many of whom came to a similar conclusion independently, agree in this proposition and who are working to bring it about.

My own interest in this discussion is from the perspective of maximization of the information ecosystem that underlies and describes the systems known as projects and programs. But what do I mean by this? This is more than a gratuitous question, because oftentimes the information essential to defining project and program performance and behavior are intermixed, and therefore diluted and obfuscated, by confusion with those of the overall enterprise.

Project vs. Program

What a mean by the term project in this context is an organization that is established around a defined effort of fixed duration (a defined beginning and projected end) that is specifically planned and organized for the development and deployment of a particular end item, state, or result, with an identified set of resources assigned and allocated to achieve its goals.

A program is defined as a set of interrelated projects and sub-projects which is also of fixed duration that is specifically planned and organized not only for the development and deployment, but also the continues this role through sustainment (including configuration control), of a particular end item, state, or result, with an identified set of resources assigned and allocated to achieve its goals. As such, the program management team also is the first level life-cycle manager of the end item, state, or result, and participates with other levels of the organization in these activities. (More on life-cycle costs below).

Note the difference in scope and perspective, though oftentimes we use these terms interchangeably.

For shorthand, a small project of short duration operates at the tactical level of planning. A larger project, which because of size, complexity, duration, and risk approaches the definition of a program, operates at the operational level, as do most programs. Larger and more complex programs that will affect the core framing assumptions of the enterprise align their goals to the strategic level of planning. Thus, there are differences in scale, complexity and, hence, data points that can be captured at these various levels.

Another aspect of the question of establishing an integrated digital project and program management environment is sufficiency of data, which relates directly to scale. Sufficiency in this regard is defined as whether there is enough data to establish a valid correlation and, hopefully, draw a causation. Micro-economic foundations–and models–often fail because of insufficient data. This is important to keep in mind as we inventory the type of data available to us and its significance. Oftentimes additional data points can make up for those cases where there is insufficiency in the depth and quality of a more limited set of data points. Doing so will also mitigate subjectivity, especially in smaller efforts.

Thus, in constructing a project or program, regardless of its level of planning, we often begin by monitoring the most basic elements. These are usually described as cost, schedule, performance, and risk, though I will discuss and identify other contributors that can be indexed.

This first post will concentrate on the first set of elements–those that constitute cost. In looking at these, however, we will find that the elements within this category are a bit broader than what is currently used in determining project and program performance.

Contract Costs

When we refer to costs in project and program management we oftentimes are referring to those direct and indirect costs expended by the supplier over the course of the effort, particular in Cost Plus contractual efforts. The breakout of cost from a data perspective places it in subcategories:

Note that these are costs within the contract itself, as a cohesive, self-identifying entity. But there are other costs associated with our contracts which feed into program and project management. These are necessary to identify and capture if we are to take an holistic approach to these disciplines.

The costs that are anticipated by the contract are based on cost estimates, which need to be funded. These funded costs will be allocated to particular lines in the contract (CLINs), whether these be supporting contract efforts or deliverables. Thus, additional elements of our digital inventory include these items but lead us to our next categories.

Cost Estimates, Colors of Money, and Cash Flow

Cost estimates are the basis for determining the entire contract effort, and eventually make it into the project and program cost plan. Once cost estimates are applied and progress is tracked through the collection of actual costs, these elements are further traced to project and program activities, products, commodities, and other business categories, such as the indirect costs identified on the right hand side of the chart above.

Our cost plans need to be financed, as with any business entity. Though the most complex projects often are financed by some government entity because of their scale and impact, private industry–even among the largest companies–must obtain financing for the efforts at hand, whether these come from internal or external sources.

Thus two more elements present themselves: “colors” of money, that is, money that is provided for a specific purpose within the project and program cost plan which could also be made available for only some limited period of time, and the availability of that money sufficient to execute particular portions of the project or program, that is, cash flow.

The phase of the project or program will determine the type of money that is made available. These are also contained in the costs that are identified in the next section, but include, from a government financing perspective, Research, Development, Test and Evaluation (RDT&E) money, Procurement, Operations and Maintenance (O&M), and Military Construction (MILCON) dollars. By Congressional appropriation and authorization, each of these types of money may be provided for particular programs, and each type of authorization has a specific period in which they can be committed, obligated, and expended before they expire. The type of money provided also aligns with the phase of the project or program: whether it still be in development, production, deployment and acquisition, sustainment, or retirement.

These costs will be reflected in reporting that reflects actual and projected rates of expenditure, that will be tied to procurement, material management, and resource management systems.

Additional Relative Costs

As with all efforts, the supplier is not the only entity to incur costs on a development project or program. The customer also incurs costs, which must be taken into account in determining the total cost of the effort.

For anyone who has undergone any kind of major effort on their home, or even had to get things other workaday things done, like deciding when to change the tires on the car or when to get to the dentist implicitly understand that there is more effort in timing and determining the completion of these items than the cost of new kitchen cabinets, tires, or a filling. One must decide to take time off from work. One must look to their own cash flow to see if they have sufficient funds not only for the merchant, but for all of the sundry and associated tasks that must be done in preparation for and after the task’s completion. To choose to do one thing is to choose not to do another–an opportunity cost. Other people may be involved in the decision. Perhaps children are in the household and a babysitter is required. Perhaps the home life is so disrupted that another temporary abode is necessary on a short term basis.

All of these are costs that one must take into account, and at the individual level we do these calculations and plan these activities as a matter of fact.

In customer-supplier relationships the former incurs costs above the contract costs, which must be taken into account by the customer project or program executive. In the Department of Defense an associated element is called program management administration (PMA). For private entities this falls into allocated G&A and Overhead costs, aside from direct labor and material costs, but in all cases these are costs that have come about due to the decision to undertake the specific effort.

Other elements of cost on the customer side are contractually furnished facilities, property, material or equipment, and testing and evaluation costs.

Contract Cost Performance: Earned Value Management

I will further discuss EVM in more detail a later installment of this element inventory, but mention must be made of EVM since to exclude it is to be grossly remiss.

At core EVM is a financial measure of value against what has been physically achieved against a performance management baseline (PMB), which ties actual costs and completion of work through a work breakdown structure (WBS). It is focused on the contract level of performance, which in some cases may constitute the entire project, though not necessarily the entire effort for the program.

Linkages to the other cost elements I have delineated elsewhere in this post ranges from strong to non-existent. Thus, while an essential means of linking contractual achievement to work accomplishment that, at various levels of fidelity, is linked to actual technical achievement, it does not capture all of the costs in our data inventory.

An essential overview in understanding what it does capture is best summed up in the following diagram taken from the Defense Acquisition University (DAU) site:

Commercial EVM elements, while not necessarily using the same terminology or highly structured process, possess a similar structure in allocating costs and achievement against baseline costs in developmental efforts to work packages (oftentimes schedule tasks in resource-loaded schedules) under an integrated WBS structure with Management Reserve not included as part of the baseline.

Also note that commercial efforts often include their internal costs as part of the overall contractual effort in assessing earned value against actual work achievement, while government contracting efforts tend to exclude these inherent costs. That being said, it is not that there is no cost control in these elements, since strict ceilings often apply to PMA and other such costs, it is that contract cost performance does not take these costs, among others, into account.

Furthermore, the chart above provides us with additional sub-elements in our inventory that are essential in capturing data at the appropriate level of our project and program hierarchy.

Thus, for IPM, EVM is one of many elements that are part our digital inventory–and one that provides a linkage to other non-cost elements (WBS). But in no way should it be viewed as capturing all essential costs associated with a contractual effort, aside from the more expansive project or program effort.

Portfolio Management and Life-Cycle Costs

There is another level of management that is essential in thinking about project and program management, and that is the program executive level. In the U.S. military services these are called Program Executive Officers (PEOs). In private industry they are often product managers, CIOs, and other positions that often represent the link between the program management teams and the business operations side of the organization. Thus, this is also the level of management organized to oversee a number of individual projects and programs that are interrelated based on mission, commodity, or purpose. As such, this level of management often concentrates on issues across the portfolio of projects and programs.

The main purpose of the portfolio management level is to ensure that project and program efforts are aligned with the strategic goals of the organization, which includes an understanding of the total cost of ownership.

In performing this purpose one of the functions of portfolio management is to identify risks that may manifest within projects and programs, and to determine the most productive use of limited resources across them, since they are essentially competing for the same dollars. This includes cost estimates and re-allocations to address ontological, aleatory, and epistemic risk.

Furthermore, the portfolio level is also concerned with the life-cycle factors of the item under development, so that there is effective hand-off at the production and sustainment phases. The key here is to ensure that each project or program, which is focused on the more immediate goals of project and program execution, continues to meet the goals of the organization in terms of life-cycle costs, and its effectiveness in meeting the established goals essential to the project or program’s framing assumptions.

But here we are focusing on cost, and so the costs involved are trade-off costs and opportunities, assessments of return on investment, and the aforementioned total cost of ownership of the end item or system. The costs that contribute to the total cost of ownership include all of the development costs, external and internal program management costs, procurement costs, operations and support costs, maintenance and life extension costs, and system retirement costs.

Conclusion

I believe that the survey of cost elements presented in this initial post illustrates that present digital project and program management systems are limited and immature–capturing and evaluating only a small portion of the total amount of available data.

These gaps make it impossible, for example, to determine the relative significance any one element–and the analytics that can derived from it–over another; not to mention the inability to provide the linkage among these absent elements that would garner insights into cause-and-effect and predictive behavior so that we have enough time to influence the outcome.

It is also clear that, when we strive to define what constitutes integrated project and program management, that we must learn what is of most importance to the PM in performing those duties that are viewed as essential to success, and which are not yet captured in our analytical and predictive systems.

Only when our systems reach the level of cohesiveness and comprehensiveness in providing organizational insight and intelligence essential to project or program management will PMs ignore them at their own risk. In getting there we must first identify what can be captured from the activities that contribute to our efforts.

My next post will identify essential elements related to planning and scheduling.

 

Note: I am indebted to Defense Acquisition University’s resources in my research across many of my postings and link to them for the edification of the reader. For more insight into many of the points raised in this post I would recommend that readers familiarize themselves with A Guide for DoD Program Managers.

 

Post-Workshop Talking Blues — No Bucks, No Buck Rogers: Cashflow Analysis in Projects (Somewhat Wonkish)

When I used this analogy the week before last during the last Integrated Project Management Workshop in the D.C. area I was accused of dating myself–and perhaps it is true. For those wondering the quote was popularized by the 1983 movie The Right Stuff, which was based on the 1979 book written by Tom Wolfe of the same title. The book and movie was about the beginnings of the U.S. space program culminating in the creation of NASA and the Project Mercury program.

A clip from the movie follows:

It goes without saying that while I was familiar as a boy with Project Mercury and followed the seven astronauts as did the rest of the country, transfixed on the prospect of space exploration during the days of the New Frontier, Buck Rogers was from the childhood of my father’s generation through, at first, its radio program, and then through the serials that were released to the movie theaters during the 1930s.

The point of the quote, of course, is that Project Mercury’s success was based on its ability to obtain funding and, no doubt, the Mercury 7 astronauts so inspired the imagination of the nation that even the most parsimonious Member of Congress could not help but provide it with sufficient funding for success. That this was also the era of the “space race” with the Soviet Union, which also helped to spur funding.

The lesson of “No Bucks, No Buck Rogers” also applies to project management, but not just in the use of imagery and marketing to gain funding. Instead, the principle applies through a more mundane part of the discipline: financial management and the relationship between cash flow and project performance.

What I am referring to as cash flow is not the burn rate of expenditures against an end point, but the intersection of sufficient money at the right time programmed in accordance with the project plan (in alignment with both the IMS and PMB), and informed by project performance.

To those unfamiliar with this method it sounds similar to earned value management, but it is not. EVM informs our decision, but the analysis is not the same.

First, in using this analysis the cumulative actual cost of work performed (ACWP in earned value) should be compared to accrued expenditures for the project. These figures will not be exact, but will provide an indication whether accruals to date have been in line with what was forecasted. In government contracting and project management, these figures will also be somewhat off because earned value figures do not include fee or profit, while financial management figures will include fee or profit. Understanding the profit center from which the financial expenditures are being accrued will allow for a reconciliation of these differences.

Secondly, if projected accruals against the project plan begin to deviate, it is an early indication of programmatic risk being manifested in the physical expenditures of the project. For example, if management anticipates that there will be a delay in project execution in some area, they may decide to defer acquisition of spare parts used in the construction of a component, or they may delay the award of a subcontract that was meant to augment staff in an area requiring specialized expertise.

Third, and conversely, deviations of expenditures for needed materials or manpower may adversely affect project execution, and provide an early warning that such shortages or misalignments will move project accomplishment to the right. For example, a company may have underestimated the combined Procurement Action Lead Time (PALT) and delivery of critical materials, which will now arrive much later than anticipated. This misalignment will cascade through the schedule and future planned work.

For both of these previous conditions, the proper determination of cause-and-effect is essential, since either may appear to suggest the opposite cause.

Fourth, variances in performance either in earned value achievement or schedule performance may require an adjustment to the type of money being provided. For example, when a project fails to execute and risk is manifested in terms of cost and/or schedule, financial management and budgeting personnel, always under pressure to apply excess funds to more immediate needs, may mistakenly believe that a budget mark (a decrease) is appropriate since the allocated money will not be executed in the current time-frame.

But this is not necessarily the case. Performance management data tracks the performance measurement baseline (PMB) for the life of the project, but funding has a finite period in which it can be executed. In government contracting it is not uncommon for there to be different “colors” of money: Research, Development, Test & Evaluation (RDT&E), Procurement, Operations and Maintenance (O&M), and others. Furthermore, these types of appropriations have different expiration dates: two years in terms of RDT&E, three years for procurement, and one year for O&M. The financial management plan takes into account the life of money allocated to the project, as well as the costs of activities necessary to project execution. The time frame for financial execution is shorter and, therefore, more sensitive to risks or variances than project plans that are projected across a longer period of time.

For an R&D program experiencing risk during a particular portion of its PMB, for example, a variance this year may require not only a steady funding profile, but a larger expenditure to handle risk. Marking two-year RDT&E money in its first year in this case would be a mistake, of course, but *not* properly anticipating the proper level of risk adjusted expenditures to handle risk may exacerbate the ability of the project to recover and execute, causing it to fall into a spiral of compounding misalignments and variances from which it may never recover.

Thus, what we can see is that, oftentimes, the availability of cash–and the right kind of cash at the right time–will have as much impact on project execution as the factors of technical and engineering risk. Furthermore, tracking and reconciling the financial plan against actual accomplishment will provide a very detailed early indicator into project performance since it is sensitive to deviations in the fiscal plan.

Postscript.

For those not savvy about the cultural reference to Buck Rogers what follows is a sampling of the first of what became a movie serial in the 1930s, which originated as a radio “space opera”. Later it became a TV series in 1950 as well. For the record, I was not around yet when these were popular, though I did watch the reruns on Saturday mornings in the 1960s and early 1970s.