Shake it Out – Embracing the Future of Program Management – Part Two: Private Industry Program and Project Management in Aerospace, Space, and Defense

In my previous post, I focused on Program and Project Management in the Public Interest, and the characteristics of its environment, especially from the perspective of the government program and acquisition disciplines. The purpose of this exploration is to lay the groundwork for understanding the future of program management—and the resulting technological and organizational challenges that are required to support that change.

The next part of this exploration is to define the motivations, characteristics, and disciplines of private industry equivalencies. Here there are commonalities, but also significant differences, that relate to the relationship and interplay between public investment, policy and acquisition, and private business interests.

Consistent with our initial focus on public interest project and program management (PPM), the vertical with the greatest relationship to it is found in the very specialized fields of aerospace, space, and defense. I will therefore first begin with this industry vertical.

Private Industry Program and Project Management

Aerospace, Space & Defense (ASD). It is here that we find commercial practice that comes closest to the types of structure, rules, and disciplines found in public interest PPM. As a result, it is also here where we find the most interesting areas of conflict and conciliation between private motivations and public needs and duties. Particularly since most of the business activity in this vertical is generated by and dependent on federal government acquisition strategy and policy.

On the defense side, the antecedent policy documents guiding acquisition and other measures are the National Security Strategy (NSS), which is produced by the President’s staff, the National Defense Strategy (NDS), which further translates and refines the NSS, and the National Military Strategy (NMS), which is delivered to the Secretary of Defense by the Joint Chiefs of Staff of the various military services, which is designed to provide unfettered military advise to the Secretary of Defense.

Note that the U.S. Department of Defense (DoD) and the related agencies, including the intelligence agencies, operate under a strict chain of command that ensures civilian control under the National Military Establishment. Aside from these structures, the documents and resulting legislation from DoD actions also impact such civilian agencies as the Department of Energy (DOE), Department of Homeland Security (DHS), the National Aeronautics and Space Administration (NASA), and the Federal Aviation Administration (FAA), among others.

The countervailing power and checks-and-balances on this Executive Branch power lies with the appropriation and oversight powers of the Congress. Until the various policies are funded and authorized by Congress, the general tenor of military, intelligence, and other operations have tangential, though not insignificant effects, on the private economy. Still, in terms of affecting how programs and projects are monitored, it is within the appropriation and authorization bills that we find the locus of power. As one of my program managers reminded me during my first round through the budget hearing process, “everyone talks, but money walks.”

On the Aerospace side, there are two main markets. One is related to commercial aircraft, parts, and engines sold to the various world airlines. The other is related to government’s role in non-defense research and development, as well as activities related to private-public partnerships, such as those related to space exploration. The individual civilian departments of government also publish their own strategic plans based on their roles, from which acquisition strategy follows. These long terms strategic plans, usually revised at least every five years, are then further refined into strategic implementation plans by various labs and directorates.

The suppliers and developers of the products and services for government, which represents the bulk of ASD, face many of the same challenges delineated in surveying their government counterparts. The difference, of course, is that these are private entities where the obligations and resulting mores are derived from business practice and contractual obligations and specifications.

This is not to imply a lack of commitment or dedication on the part of private entities. But it is an important distinction, particularly since financial incentives and self-interest are paramount considerations. A contract negotiator, for example, in order to be effective, must understand the underlying pressures and relative position of each of the competitors in the market being addressed. This individual should also be familiar with the particular core technical competencies of the competitors as well as their own strategic plans, the financial positions and goals that they share with their shareholders in the case of publicly traded corporations, and whether actual competition exists.

The Structure of the Market. Given the mergers and acquisitions of the last 30 years, along with the consolidation promoted by the Department of Defense as unofficial policy after the fall of the Berlin Wall and the lapse of antitrust enforcement, the portion of ASD and Space that rely on direct government funding, even those that participate in public-private ventures where risk sharing is involved, operate in a monopsony—the condition in which a single buyer—the U.S. government—substantially controls the market as the main purchaser of supplies and services. This monopsony market is then served by a supplier market that is largely an oligopoly—where there are few suppliers and limited competition—and where, in some technical domains, some suppliers exert monopoly power.

Acknowledging this condition informs us regarding the operational motivators of this market segment in relation to culture, practice, and the disciplines and professions employed.

In the first case, given the position of the U.S. government, the normal pressures of market competition and market incentives do not apply to the few competitors participating in the market. As a result, only the main buyer has the power to recreate, in an artificial manner, an environment which replicate the market incentives and penalties normally employed in a normative, highly diverse and competitive market.

Along these lines, for market incentives, the government can, and often does, act as the angel investor, given the rigorous need for R&D in such efforts. It can also lower the barriers to participation in order to encourage more competition and innovation. This can be deployed across the entire range of limited competitors, or it can be expansive in its approach to invite new participants.

Market penalties that are recreated in this environment usually target what economists call “rent-seeking behavior.” This is a situation where there may be incumbents that seek to increase their own wealth without creating new benefits, innovation, or providing additional wealth to society. Lobbying, glad-handing, cronyism, and other methods are employed and, oftentimes, rampant under monosponistic systems. Revolving-door practices, in which the former government official responsible for oversight obtains employment in the same industry and, oftentimes, with the same company, is too often seen in these cases.

Where there are few competitors, market participants will often play follow-the-leader and align themselves to dominate particular segments of the market in appealing to the government or elected representatives for business. This may mean that, in many cases, they team with their ostensible competitors to provide a diverse set of expertise from the various areas of specialty. As with any business, profitability is of paramount importance, for without profit there can be no business operations. It is here: the maximization of profit and shareholder value, that is the locus of power in understanding the motivation of these and most businesses.

This is not a value judgment. As faulty and risky as this system may be, no better business structure has been found to provide value to the public through incentives for productive work, innovation, the satisfaction of demand, and efficiency. The challenge, apart from what political leadership decides to do regarding the rules of the market, is to make those rules that do exist work in the public interest through fair, ethical, and open contracting practices.

To do this successfully requires contracting and negotiating expertise. To many executives and non-contracting personnel, negotiations appear to be a zero-sum game. No doubt, popular culture, mass media and movies, and self-promoting business people help mold this perception. Those from the legal profession, in particular, deal with a negotiation as an extension of the adversarial processes through which they usually operate. This is understandable given their education, and usually disastrous.

As an attorney friend of mine once observed: “My job, if I have done it right, is to ensure that everyone walking out of the room is in some way unhappy. Your job, in contrast, is to ensure that everyone walking out of it is happy.” While a generalization—and told tongue-in-cheek—it highlights the core difference in approach between these competing perspectives.

A good negotiator has learned that, given two motivated sides coming together to form a contract, that there is an area of intersection where both parties will view the deal being struck as meeting their goals, and as such, fair and reasonable. It is the job of the negotiator to find that area of mutual fairness, while also ensuring that the contract is clear and free of ambiguity, and that the structure of the instrument—price and/or cost, delivery, technical specification, statement of work or performance specification, key performance parameters, measures of performance, measures of effectiveness, management, sufficiency of capability (responsibility), and expertise—sets up the parties involved for success. A bad contract can no more be made good than the poorly prepared and compacted soil and foundation of a house be made good after the building goes up.

The purpose of a good contract is to avoid litigation, not to increase the likelihood of it happening. Furthermore, it serves the interests of neither side to obtain a product or service at a price, or under such onerous conditions, where the enterprise fails to survive. Alternatively, it does a supplier little good to obtain a contract that provides the customer with little financial flexibility, that fails to fully deliver on its commitments, that adversely affects its reputation, or that is perceived in a negative light by the public.

Effective negotiators on both sides of the table are aware of these risks and hazards, and so each is responsible for the final result, though often the power dynamic between the parties may be asymmetrical, depending on the specific situation. It is one of the few cases in which parties having both mutual and competing interests are brought together where each side is responsible for ensuring that the other does not hazard their organization. It is in this way that a contract—specifically one that consists of a long-term R&D cost-plus contract—is much like a partnership. Both parties must act in good faith to ensure the success of the project—all other considerations aside—once the contract is signed.

In this way, the manner of negotiating and executing contracts is very much a microcosm of civil society as a whole, for good or for bad, depending on the practices employed.

Given that the structure of aerospace, space, and defense consists of one dominant buyer with few major suppliers, the disciplines required relate to the details of the contract and its resulting requirements that establish the rules of governance.

As I outlined in my previous post, the characteristics of program and project management in the public interest, which are the products of contract management, are focused on successfully developing and obtaining a product to meet particular goals of the public under law, practice, and other delineated specific characteristics.

As a result, the skill-sets that are of paramount importance to business in this market prior to contract award are cost estimating, applied engineering expertise including systems engineering, financial management, contract negotiation, and law. The remainder of disciplines regarding project and program management expertise follow based on what has been established in the contract and the amount of leeway the contracting instrument provides in terms of risk management, cost recovery, and profit maximization, but the main difference is that this approach to the project leans more toward contract management.

Another consideration in which domains are brought to bear relates to position of the business in terms of market share and level of dominance in a particular segment of the market. For example, a company may decide to allow a lower than desired target profit. In the most extreme cases, the company may allow the contract to become a loss leader in order to continue to dominate a core competency or to prevent new entries into that portion of the market.

On the other side of the table, government negotiators are prohibited by the Federal Acquisition Regulation (the FAR) from allowing companies to “buy-in” by proposing an obviously lowball offer, but some do in any event, whether it is due to lack of expertise or bowing to the exigencies of price or cost. This last condition, combined with rent-seeking behavior mentioned earlier, where they occur, will distort and undermine the practices and indicators needed for effective project and program management. In these cases, the dysfunctional result is to create incentives to maximize revenue and scope through change orders, contracting language ambiguity, and price inelasticity. This also creates an environment that is resistant to innovation and rewards inefficiency.

But apart from these exceptions, the contract and its provisions, requirements, and type are what determine the structure of the eventual project or program management team. Unlike the commercial markets in which there are many competitors, the government through negotiation will determine the manner of burdening rate structures and allowable profit or margin. This last figure is determined by the contract type and the perceived risk of the contract goals to the contractor. The higher the risk, the higher the allowed margin or profit. The reverse applies as well.

Given this basis, the interplay between private entities and the public acquisition organizations, including the policy-setting staffs, are also of primary concern. Decision-makers, influences, and subject-matter experts from these entities participate together in what are ostensibly professional organizations, such as the National Defense Industrial Association (NDIA), the Project Management Institute (PMI), the College of Scheduling (CoS), the College of Performance Management (CPM), the International Council on Systems Engineering (INCOSE), the National Contract Management Association (NCMA), and the International Cost Estimating and Analysis Association (ICEAA), among the most frequently attended by these groups. Corresponding and associated private and professional groups are the Project Control Academy and the Association for Computing Machinery (ACM).

This list is by no means exhaustive, but from the perspective of suppliers to public agencies, NDIA, PMI, CoS, and CPM are of particular interest because much of the business of influencing policy and the details of its application are accomplished here. In this manner, the interests of the participants from the corporate side of the equation relate to those areas always of concern: business certainty, minimization of oversight, market and government influence. The market for several years now has been reactive, not proactive.

There is no doubt that business organizations from local Chambers of Commerce to specialized trade groups that bring with them the advantages of finding mutual interests and synergy. All also come with the ills and dysfunction, to varying degrees, borne from self-promotion, glad-handing, back-scratching, and ossification.

In groups where there is little appetite to upend the status quo, innovation and change, is viewed with suspicion and as being risky. In such cases the standard reaction is cognitive dissonance. At least until measures can be taken to subsume or control the pace and nature of the change. This is particularly true in the area of project and program management in general and integrated project, program and portfolio management (IPPM), in particular.

Absent the appetite on the part of DoD to replicate market forces that drive the acceptance of innovative IPPM approaches, one large event and various evolutionary aviation and space technology trends have upended the ecosystem of rent-seeking, reaction, and incumbents bent on maintaining the status quo.

The one large event, of course, came about from the changes wrought by the Covid pandemic. The other, evolutionary changes, are a result of the acceleration of software technology in capturing and transforming big(ger) dataset combined with open business intelligence systems that can be flexibly delivered locally and via the Cloud.

I also predict that these changes will make hard-coded, purpose-driven niche applications obsolete within the next five years, as well as those companies that have built their businesses around delivering custom, niche applications, and MS Excel spreadsheets, and those core companies that are comfortable suboptimizing and reacting to delivering the letter, if not the spirit, of good business practice expected under their contracts.

Walking hand-in-hand with these technological and business developments, the business of the aerospace, space and defense market, in general, is facing a window opening for new entries and greater competition borne of emergent engineering and technological exigencies that demand innovation and new approaches to old, persistent problems.

The coronavirus pandemic and new challenges from the realities of global competition, global warming, geopolitical rivalries; aviation, space and atmospheric science; and the revolution in data capture, transformation, and optimization are upending a period of quiescence and retrenchment in the market. These factors are moving the urgency of innovation and change to the left both rapidly and in a disruptive manner that will only accelerate after the immediate pandemic crisis passes.

In my studies of Toynbee and other historians (outside of my day job, I am also credentialed in political science and history, among other disciplines, through both undergraduate and graduate education), I have observed that societies and cultures that do not embrace the future and confront their challenges effectively, and that do not do so in a constructive manner, find themselves overrun by it and them. History is the chronicle of human frailty, tragedy, and failure interspersed by amazing periods of resilience, human flourishing, advancement, and hope.

As it relates to our more prosaic concerns, Deloitte has published an insightful paper on the 2021 industry outlook. Among the identified short-term developments are:

  1. A slow recovery in passenger travel may impact aircraft deliveries and industry revenues in commercial aviation,
  2. The defense sector will remain stable as countries plan to sustain their military capabilities,
  3. Satellite broadband, space exploration and militarization will drive growth,
  4. Industry will shift to transforming supply chains into more resilient and dynamic networks,
  5. Merger and acquisitions are likely to recover in 2021 as a hedge toward ensuring long-term growth and market share.

More importantly, the longer-term changes to the industry are being driven by the following technological and market changes:

  • Advanced aerial mobility (AAM). Both FAA and NASA are making investments in this area, and so the opening exists for new entries into the market, including new entries in the supply chain, that will disrupt the giants (absent a permissive M&A stance under the new Administration in Washington). AAM is the new paradigm to introduce safe, short-distance, daily-commute flying technologies using vertical lift.
  • Hypersonics. Given the touted investment of Russia and China into this technology as a means of leveraging against the power projection of U.S. forces, particularly its Navy and carrier battle groups (aside from the apparent fact that Vladimir Putin, the president of Upper Volta with Missiles and Hackers, really hates Disney World), the DoD is projected to fast-track hypersonic capabilities and countermeasures.
  • Electric propulsion. NASA is investing in cost-sharing capabilities to leverage electric propulsion technologies, looking to benefit from the start-up growth in this sector. This is an exciting development which has the potential to transform the entire industry over the next decade and after.
  • Hydrogen-powered aircraft. OEMs are continuing to pour private investment money into start-ups looking to introduce more fuel-efficient and clean energy alternatives. As with electric propulsion, there are prototypes of these aircraft being produced and as public investments into cost-sharing and market-investment strategies take hold, the U.S., Europe, and Asia are looking at a more diverse and innovative aerospace, space, and defense market.

Given the present condition of the industry, and the emerging technological developments and resulting transformation of flight, propulsion, and fuel sources, the concept and definitions used in project and program management require a revision to meet the exigencies of the new market.

For both industry and government, in order to address these new developments, I believe that a new language is necessary, as well as a complete revision to what is considered to be the acceptable baseline of best business practice and the art of the possible. Only then will organizations and companies be positioned to address the challenges these new forms of investment and partnering systems will raise.

The New Language of Integrated Program, Project, and Portfolio Management (IPPM).

First a digression to the past: while I was on active duty in the Navy, near the end of my career, I was assigned to the staff of the Office of the Undersecretary of Defense for Acquisition and Technology (OUSD(A&T)). Ostensibly, my assignment was to give me a place to transition from the Service. Thus, I followed the senior executive, who was PEO(A) at NAVAIR, to the Pentagon, simultaneously with the transition of NAVAIR to Patuxent River, Maryland. In reality, I had been tasked by the senior executive, Mr. Dan Czelusniak, to explore and achieve three goals:

  1. To develop a common schema by supporting an existing contract for the collection of data from DoD suppliers from cost-plus R&D contracts with the goal in mind of creating a master historical database of contract performance and technological development risk. This schema would first be directed to cost performance, or EVM;
  2. To continue to develop a language, methodology, and standard, first started and funded by NAVAIR, for the integration of systems engineering and technical performance management into the program management business rhythm;
  3. To create and define a definition of Integrated Program Management.

I largely achieved the first two during my relatively brief period there.

The first became known and the Integrated Digital Environment (IDE), which was refined and fully implemented after my departure from the Service. Much of this work is the basis for data capture, transformation, and load (ETL) today. There had already been a good deal of work by private individuals, organizations, and other governments in establishing common schemas, which were first applied to the transportation and shipping industries. But the team of individuals I worked with were able to set the bar for what followed across datasets.

The second was completed and turned over to the Services and federal agencies, many of whom adopted the initial approach, and refined it as well to inform, through the identification of technical risk, cost performance and technical achievement. Much of this knowledge already existed in the Systems Engineering community, but working with INCOSE, a group of like-minded individuals were able to take the work from the proof-of-concept, which was awarded the Acker in Skill in Communication award at the DAU Acquisition Research Symposium, and turn it into the TPM and KPP standard used by organizations today.

The third began with establishing my position, which hadn’t existed until my arrival: Lead Action Officer, Integrated Program Management. Gary Christle, who was the senior executive in charge of the staff, asked me “What is Integrated Program Management?” I responded: “I don’t know, sir, but I intend to find out.” Unfortunately, this is the initiative that has still eluded both industry and government, but not without some advancement.

Note that this position with its charter to define IPM was created over 24 years ago—about the same time it takes, apparently, to produce an operational fighter jet. I note this with no flippancy, for I believe that the connection is more than just coincidental.

When spoken of, IPM and IPPM are oftentimes restricted to the concept of cost (read cost performance or EVM) and schedule integration, with aggregated portfolio organization across a selected number of projects thrown in, in the latter case. That was considered advancement in 1997. But today, we seem to be stuck in time. In light of present technology and capabilities, this is a self-limiting concept.

This concept is technologically supported by a neutral schema that is authored and managed by DoD. While essential to data capture and transformation—and because of this fact—it is currently the target by incumbents as a means of further limiting even this self-limited definition in practice. It is ironic that a technological advance that supports data-driven in lieu of report-driven information integration is being influenced to support the old paradigm.

The motivations are varied: industry suppliers who aim to restrict access to performance data under project and program management, incumbent technology providers who wish to keep the changes in data capture and transformation restricted to their limited capabilities, consulting companies aligned with technology incumbents, and staff augmentation firms dependent on keeping their customers dependent on custom application development and Excel workbooks. All of these forces work through the various professional organizations which work to influence government policy, hoping to establish themselves as the arbiters of the possible and the acceptable.

Note that oftentimes the requirements under project management are often critiqued under the rubric of government regulation. But that is a misnomer: it is an extension of government contract management. Another critique is made from the perspective of overhead costs. But management costs money, and one would not (or at least should not) drive a car or own a house without insurance and a budget for maintenance, much less a multi-year high-cost project involving the public’s money. In addition, as I have written previously which is supported by the literature, data-driven systems actually reduce costs and overhead.

All of these factors contribute to ossification, and impose artificial blinders that, absent reform, will undermine meeting the new paradigms of 21st Century project management, given that the limited concept of IPM was obviously insufficient to address the challenges of the transitional decade that broached the last century.

Embracing the Future in Aerospace, Space, and Defense

As indicated, the aerospace and space science and technology verticals are entering a new and exciting phase of technological innovation resulting from investments in start-ups and R&D, including public-private cost-sharing arrangements.

  1. IPM to Project Life-Cycle Management. Given the baggage that attends the acronym IPM, and the worldwide trend to data-driven decision-making, it is time to adjust the language of project and program management to align to it. In lieu of IPM, I suggest Project Life-Cycle Management to define the approach to project and program data and information management.
  2. Functionality-Driven to Data-Driven Applications. Our software, systems and procedures must be able to support that infrastructure and be similarly in alignment with that manner of thinking. This evolution includes the following attributes:
    • Data Agnosticism. As our decision-making methods expand to include a wider, deeper, and more comprehensive interdisciplinary approach, our underlying systems must be able to access data in this same manner. As such, these systems must be data agnostic.
    • Data neutrality. In order to optimize access to data, the overhead and effort needed to access data must be greatly reduced. Using data science and analysis to restructure pre-conditioned data in order to overcome proprietary lexicons—an approach used for business intelligence systems since the 1980s—provides no added value to either the data or the organization. If data access is ad hoc and customized in every implementation, the value of the effort cannot either persist, nor is the return on investment fully realized. It backs the customer into a corner in terms of flexibility and innovation. Thus, pre-configured data capture, extract, transformation, and load (ETL) into a non-proprietary and objective format, which applies to all data types used in project and program management systems, is essential to providing the basis for a knowledge-based environment that encourages discovery from data. This approach in ETL is enhanced by the utilization of neutral data schemas.
    • Data in Lieu of Reporting and Visualization. No doubt that data must be visualized at some point—preferably after its transformation and load into the database with other, interrelated data elements that illuminate information to enhance the knowledge of the decisionmaker. This implies that systems that rely on physical report formats, charts, and graphs as the goal are not in alignment with the new paradigm. Where Excel spreadsheets and PowerPoint are used as a management system, it is the preparer is providing the interpretation, in a manner that predisposes the possible alternatives of interpretation. The goal, instead, is to have data speak for itself. It is the data, transformed into information, interrelated and contextualized to create intelligence that is the goal.
    • All of the Data, All of the Time. The cost of 1TB of data compared to 1MB of data is the marginal cost of the additional electrons to produce it. Our systems must be able to capture all of the data essential to effective decision-making in the periodicity determined by the nature of the data. Thus, our software systems must be able to relate data at all levels and to scale from simplistic datasets to extremely large ones. It should do so in such a way that the option for determining what, among the full menu of data options available, is relevant rests in the consumer of that data.
    • Open Systems. Software solution providers beginning with the introduction of widespread CPU capability have manufactured software to perform particular functions based on particular disciplines and very specific capabilities. As noted earlier, these software applications are functionality-focused and proprietary in structure, method, and data. For data-driven project and program requirements, software systems must be flexible enough to accommodate a wide range of analytical and visualization demands in allowing the data to determine the rules of engagement. This implies systems that are open in two ways: data agnosticism, as already noted, but also open in terms of the user environment.
    • Flexible Application Configuration. Our systems must be able to address the needs of the various disciplines in their details, while also allowing for integration and contextualization of interrelated data across domains. As with Open Systems to data and the user environment, openness through the ability to roll out multiple specialized applications from a common platform places the subject matter expert and program manager in the driver’s seat in terms of data analysis and visualization. An effective open platform also reduces the overhead associated with limited purpose-driven, disconnected and proprietary niche applications.
    • No-Code/Low-Code. Given that data and the consumer will determine both the source and method of delivery, our open systems should provide an environment that supports Agile development and deployment of customization and new requirements.
    • Knowledge-Based Content. Given the extensive amount of experience and education recorded and documented in the literature, our systems must, at the very least, provide a baseline of predictive analytics and visualization methods usually found in the more limited, purpose-built hardcoded applications, if not more expansive. This knowledge-based content, however, must be easily expandable and refinable, given the other attributes of openness, flexibility, and application configuration. In this manner, our 21st century project and program management systems must possess the attributes of a hybrid system: providing the functionality of the traditional niche systems with the flexibility and power of a business intelligence system enhanced by COTS data capture and transformation.
    • Ease of Use. The flexibility and power of these systems must be such that implementation and deployment are rapid, and that new user environment applications can be quickly deployed. Furthermore, the end user should be able to determine the level of complexity or simplicity of the environment to support ease of use.
  1. Focus on the Earliest Indicator. A good deal of effort since the late 1990s has been expended on defining the highest level of summary data that is sufficient to inform earned value, with schedule integration derived from the WBS, oftentimes summarized on a one-to-many basis as well. This perspective is biased toward believing that cost performance is the basis for determining project control and performance. But even when related to cost, the focus is backwards. The project lifecycle in its optimized form exists of the following progression:

    Project Goals and Contract (framing assumptions) –> Systems Engineering, CDRLs, KPPs, MoEs, MoPs, TPMs –> Project Estimate –> Project Plan –> IMS –> Risk and Uncertainty Analysis –> Financial Planning and Execution –> PMB –> EVM

    As I’ve documented in this blog over the years, DoD studies have shown that, while greater detail within the EVM data may not garner greater early warning, proper integration with the schedule at the work package level does. Program variances first appear in the IMS. A good IMS, thus, is key to collecting and acting as the main execution document. This is why many program managers who are largely absent in the last decade or so from the professional organizations listed, tend to assert that EVM is like “looking in the rearview mirror.” It isn’t that it is not essential, but it is true that it is not the earliest indicator of variances from expected baseline project performance.

    Thus, the emphasis going forward under this new paradigm is not to continue the emphasis and a central role for EVM, but a shift to the earliest indicator for each aspect of the program that defines its framing assumptions.
  1. Systems Engineering: It’s not Space Science, it’s Space Engineering, which is harder.
    The focus on start-up financing and developmental cost-sharing shifts the focus to systems engineering configuration control and technical performance indicators. The emphasis on meeting expectations, program goals, and achieving milestones within the cost share make it essential to be able to identify fatal variances, long before conventional cost performance indicators show variances. The concern of the program manager in these cases isn’t so much on the estimate at complete, but whether the industry partner will be able to deploy the technology within the acceptable range of the MoEs, MoPs, TPPs, and KPPs, and not exceed the government’s portion of the cost share. Thus, the incentive is to not only identify variances and unacceptable risk at the earliest indicator, but to do so in terms of whether the end-item technology will be successfully deployed, or whether the government should cut its losses.
  1. Risk and Uncertainty is more than SRA. The late 20th century approach to risk management is to run a simulated Monte Carlo analysis against the schedule, and to identify alternative critical paths and any unacceptable risks within the critical path. This is known as the schedule risk analysis, or SRA. While valuable, the ratio of personnel engaged in risk management is much smaller than the staffs devoted to schedule and cost analysis.

    This is no doubt due to the specialized language and techniques devoted to risk and uncertainty. This segregation of risk from mainstream project and program analysis has severely restricted both the utility and the real-world impact of risk analysis on program management decision-making.

    But risk and uncertainty extend beyond the schedule risk analysis, and their utility in an environment of aggressive investment in new technology, innovation, and new entries to the market will place these assessments at center stage. In reality, our ability to apply risk analysis techniques extends to the project plan, to technical performance indicators, to estimating, to the integrated master schedule (IMS), and to cost, both financial and from an earned value perspective. Combined with the need to identify risk and major variances using the earliest indicator, risk analysis becomes pivotal to mainstream program analysis and decision-making.

Conclusions from Part Two

The ASD industry is most closely aligned with PPM in the public interest. Two overarching trends that are transforming this market that are overcoming the inertia and ossification of PPM thought are the communications and information systems employed in response to the coronavirus pandemic, which opened pathways to new ways of thinking about the status quo, and the start-ups and new entries into the ASD market, borne from the investments in new technologies arising from external market, geo-political, space science, global warming, and propulsion trends, as well as new technologies and methods being employed in data and information technology that drive greater efficiency and productivity. These changes have forced a new language and new expectations as to the art of the necessary, as well as the art of the possible, for PPM. This new language includes a transition to the concept of the optimal capture and use of all data across the program management life cycle with greater emphasis on systems engineering, technical performance, and risk.

Having summarized the new program paradigm in Aerospace, Space, and Defense, my next post will assess the characteristics of program management in various commercial industries, the rising trends in these verticals, and what that means for the project and program management discipline.

Shake it Out – Embracing the Future in Program Management – Part One: Program and Project Management in the Public Interest

I heard the song from which I derived the title to this post sung by Florence and the Machine and was inspired to sit down and write about what I see as the future in program management.

Thus, my blogging radio silence has ended as I begin to process and share my observations and essential achievements over the last couple of years.

Some of my reticence in writing has been due to the continual drumbeat of both outrageous and polarizing speech that had dominated our lives for four years. Combined with the resulting societal polarization, I was overwhelmed by the hyper-politicized environment which has fostered disinformation and dysfunction. Those who wish to seek my first and current word on this subject need only visit my blog post, “In Defense of Empiricism” at the AITS Blogging Alliance here.

It is hard to believe that I published that post four years ago. I stand by it today and believe that it remains as valid, if not more so, than it did when I wrote and shared it.

Finally, the last and most important reason for my relative silence has been that I have been hard at work putting my money and reputation where my blogging fingers have been—in the face of a pandemic that has transformed and transfigured our social and economic lives.

My company—the conduit that provides the insights I share here—is SNA Software LLC. We are a small, veteran-owned company and we specialize in data capture, transformation, contextualization and visualization. We do it in a way that removes significant effort in these processes, ensures reliability and trust, to incorporate off-the-shelf functionality that provides insight, and empowers the user by leveraging the power of open systems, especially in program and project management.

Program and Project Management in the Public Interest

There are two aspects to the business world that we inhabit: commercial and government; both, however, usually relate to some aspect of the public interest, which is our forte.

There are also two concepts about this subject to unpack.

The first is distinguishing between program and project management. In this concept, a program is an overarching effort that may consist of individual efforts that, together, will result in the production or completion of a system, whether that is a weapons system, a satellite, a spacecraft, or an engine. It could even be a dam or some other aspect of public works.

A project under this concept is a self-contained effort separated organizationally from the larger entity, which possesses a clearly defined start and finish, a defined and allocated budget, and a set of plans, a performance management feedback system, and overarching goals or “framing assumptions” that define what constitutes the state of being “done.”

Oftentimes the terms “program” and “project” are used interchangeably, but the difference for these types of efforts is important and goes beyond a shallow understanding of the semantics. A program will also consider the lifecycle of the program: the follow-on logistics, the interrelationship of the end item to other components that will constitute the deployed system or systems, and any iterative efforts relating to improvement, revision, and modernization.

A word on the term “portfolio” is also worth a mention in the context of our theme. A portfolio is simply a summary of the projects or programs under an organizational entity that has both reporting and oversight responsibility for them. They may be interrelated or independent in their efforts, but all must report in some way, either due to fiduciary, resource, or oversight concerns, to that overarching entity.

The second concept relates to the term “public interest.” Programs and projects under this concept are those that must address the following characteristics: legality, governance, complexity, integrity, leadership, oversight, and subject matter expertise. I placed these in no particular order.

What we call in modern times “public interest” was originally called “public virtue” by the founders of the United States, which embody the ideals of the American Revolution, and upon which our experiment in democratic republicanism is built. It consists of conducting oneself in a manner in which the good of the whole—the public—outweighs personal interests and pursuits. Self-dealing need not apply.

This is no idealistic form of self-delusion: I understand, as do my colleagues, that we are, at heart, a commercial profit-making enterprise. But the manner in which we engage with government requires a different set of rules and many of these rules are codified in law and ethical practice. While others do not always feel obliged to live by these rules, we govern ourselves and so choose to apply these virtues—and to seek to support and change our system to encourage such behavior to as to be the norm—even in direct interactions with government personnel where we feel these virtues have been violated.

Characteristics of Public Interest Programs

Thus, the characteristics outlined above apply to program and project management in the public interest in the following manner:

Legality: That Public Interest Programs are an artifact of law and statute and are specifically designed to benefit the public as a whole.

At heart, program and project management are based on contractual obligations, whether those instruments apply internally or externally. As a result, everyone involved in the program and project management discipline is, by default, part of the acquisition community and the acquisition process. The law that applies to all government acquisition systems is based on the Federal Acquisition Regulation (FAR). There are also oversight and fiduciary responsibilities that apply as a result of the need for accountability under the Congressional appropriations process as well as ethical standards that apply, such as those under the Truth in Negotiations Act (TINA). While broad in the management flexibility they allow, violations of these statutes come with serious consequences. Thus, as a basis for establishing hard and fast guardrails in the management of programs and projects. Individual government agencies and military services also publish additional standards that supplement the legal requirements. An example is the Department of Defense FAR Supplement (DFARS). Commercial entities that hold government contracts in relation to Program Management Offices (PMOs) must sign on to both FAR and agency contractual clauses, which will then flow down to their subcontractors. Thus, the enforcement of these norms is both structured and consistent.

Governance: That the Organizational Structure and Disciplines deriving from Public Interest Programs are a result of both Contract and Regulatory Practice under the concept of Government Sovereignty.

The government and supplier PMOs are formed as a result of a contractual obligation for a particular purpose. Government contracting is unique since government entities are the sovereign. In the case of the United States, the sovereign is the elected government of the United States, which derives its legitimacy from the people of the United States as a whole. Constitutionally, the Executive Branch is tasked with the acquisition responsibility, but the manner and method of this responsibility is defined by statute.

Thus, during negotiations and unlike in commercial practice, the commercial entity is always the offeror and the United States always the party that either accepts or rejects the offer (the acceptor). This relationship has ramifications in contract enforcement and governance of the effort after award. It also allows the government to dictate the terms of the award through its solicitations. Furthermore, provisions from law establish cases where the burden for performance is on the entity (the supplier) providing the supplies and services.

Thus, the establishment of the PMO and oversight organizations have a legal basis, aside from considerations of best business practice. The details of governance within the bounds of legal guidance are those that apply through agency administrative law and regulation, oftentimes based on best business practice. These detailed practices of governance are usually established as a result of hard-learned experience: establishment of disciplines (systems engineering and technical performance, planning, performance management, cost control, financial execution, schedule, and progress assessment), the periodicity of reporting, the manner of oversight, the manner of liaison between the supplier and government PMOs, and alignment to the organization’s goals.

Complexity: That Public Interest Programs possess a level of both technical and organizational complexity unequaled in the private sector.

Program and project management in government involves a level of complexity rarely found in similar non-governmental commercial efforts. Aligning the contractual requirements, as an example, to an assessment of the future characteristics of a fighter aircraft needed to support the U.S. National Defense Strategy, built on the assessments by the intelligence agencies regarding future threats, is a unique aspect of government acquisition.

Furthermore, while relying on the expertise of private industry of such systems that support national defense, as well as those that support space exploration, energy, and a host of other needs, the items being acquired, which require cost type R&D contracts that involve program management, by definition are those where the necessary solutions are not readily available as commercial end items.

Oftentimes these requirements are built onto and extend existing off-the-shelf capabilities. But given that government investment in R&D represents the majority of this type of spending in the economy, absent it, technology and other efforts directed to meeting defense, economic, societal, climate, and space exploration challenges of the future would most likely not be met—or those that do will benefit only a portion of the populace. The federal government uniquely possesses the legal legitimacy, resources, and expertise to undertake such R&D that, pushing the envelope on capabilities, involves both epistemic and aleatory risk that can be managed through the processes of program management.

Integrity: The conduct of Public Interest Programs demands the highest level of commitment to a culture of accountability, impartiality, ethical conduct, fiduciary responsibility, democratic virtues, and honesty.

The first level of accountability resides in the conduct of the program manager, who is the locus of integrity within the program management office. This requires a focus on the duties the position demands as a representative of the Government of the United States. Furthermore, the program manager must ensure that the program team operate within the constraints established by the program’s or project’s contractual commitments, and that it continues to work to meeting the program goals that align with the stated interests and goals of the organization. That these duties are exercised regardless of self-interest is the basis of integrity.

This is not an easy discipline, and individuals oftentimes cannot separate their own interests from those of their duties. Yet, without this level of commitment, the legitimacy of the program office and the governmental enterprise itself is threatened.

In prior years, as an active-duty Supply Corps officer, I came across cases where individuals in civil service or among the commissioned officer community confused their own interests—for promotion, for self-aggrandizement, for ego—with those duties demanded of their rank or position. Such confusions of interests are serious transgressions. With contracted-out positions within program offices adding consulting and staffing firms into the mix, with their oftentimes diversified interests and portfolios, an additional layer of challenges is presented. Self-promotion, competition, and self-dealing have all too often become blatant, and program managers would do well to enforce strict rules regarding such behavior.

The pressures of exigency are oftentimes the main cause of the loss of integrity of the program or project. Personal interrelationships and human resource management issues can also undermine good order and discipline necessary for the program or project to organize itself into a cohesive, working team that is focused on a common vision.

Key elements mentioned in our opening thesis regarding ethical conduct, adherence to democratic virtues which include acceptance of all members of the team regardless of color, ethnicity, race, sexual identity, religion, or place of national origin. People deserve the respect and decency deriving from their basic human rights to enjoy human dignity, as well as of their position. Adding to these elements include honesty and the willingness to accept and report bad news, which is essential to integrity.

An organization committed to the principle of accountability will seek to measure and ensure that the goals of the program or project are being met, and that ameliorative measures are taken to correct any deficiencies. Since these efforts oftentimes involve years of effort involving significant sums of public monies, fiduciary integrity is essential to this characteristic.

All of these elements can and should exist in private, commercial practices. The difference that makes this a unique characteristic to program management in the public interest is the level of scrutiny, reporting, and review that is conducted: from oversight agencies within the Executive Department of the government, to the Congressional oversight, hearing and review processes, agency review, auditing and reporting, and inquires and critiques by the press and the public. Public interest program management is life in a fishbowl, except in the most secret efforts, and even those will eventually be subject to scrutiny.

As with a U.S. Navy ship that makes a port of call in a foreign country, the actions of the conduct of crew will not only reflect on themselves or their ship, but on the United States; so it is also with our program offices. Thus, systems of programmatic governance and business management must anticipate in their structure the level of adherence required. Given the inherent level of risk involved in these efforts, and given the normal amount of error human systems create even with good intentions and expertise, establishing a system committed to the elements of integrity creates a self-correcting one better prepared to meet the program’s or project’s challenges.

Leadership: Programs in the Public Interest differ from equivalent commercial efforts in that management systems and incentives based on profit- and shareholder-orientations do not exist. Instead, a special kind of skillset is required that includes good business management principles and skills combined with highly developed leadership traits.

Management skills tend to be a subset of leadership, though in business schools and professional courses they tend to be addressed as co-equal. This is understandable in commercial enterprises that focus on the capitalistic pressures regarding profit and market share.

Given the unique pressures imposed by the elements of integrity, the program manager and the program team are thrown into a situation that requires a focus on the achievement of organizational goals. In the case of program and project management, this will be expressed in the form of a set of “framing assumptions” that roll into an overarching vision.

A program office, of course, is more than a set of systems, practices, and processes. It is, first and foremost, a collection of individuals consisting of subject matter experts and professionals who must be developed into a team committed to the vision. The effort to achieve this team commitment is one of the more emotional and compelling elements that comprise leadership.

Human systems are adaptive ones, complex, which react and are created by both incentives and sanctions. Every group, especially involving creative and talented people, starts out being a collection of individuals with the interrelations among the members in an immature state. Underlying the expression of various forms of ambition and self-identification among mature individuals is the basic human need for social acceptance, born from the individual personal need for love. This motivation exists psychologically in all individuals except for sociopaths. It is also the basis for empathy and the acceptance of the autonomy of others, which form the foundation for team building.

The goal of the leader is to encourage maturity among the members of the group. The result is to create that overused term “synergy.” This is accomplished by doing those things as a leader necessary to develop members of the group that fosters trust, acceptance, and mutual respect. Admiral James L. Holloway, Jr., in his missive on Naval Leadership, instructed his young officers to eschew any concept of perfectionism in people. People make mistakes. We know this if we are to be brutally honest about our own experiences and actions.

Thus, intellectual honesty and an understanding on what motivates people within their cultural mores, above all else, is essential to good leadership. Americans, by nature, tend to be skeptical and independently minded. They require a level of explanation and due diligence that is necessary to win over their commitment to a goal or vision. When it comes to professionals operating within public service in government—who take an oath to the Constitution and our system of laws—the ability to lead tends to be more essential than just good management skills, though the latter are by no means unimportant. Management in private enterprise assumes a contentious workplace of competing values and interests, and oftentimes fosters it.

Program and project management in the public interest cannot succeed in such an environment. It requires a level of commitment to the goals of the effort regardless of personal values or interests among the individual members of the team. That they must be convinced to this level of commitment ensures that the values of leadership not only operate at the top of the management chain, but also at each of the levels and lateral relationships that comprise the team.

The shorthand for leadership in this culture is that the leader is “working their way out of their job,” and “that in order to be a good leader one must be a good follower,” meaning that all members of the team are well-informed, that their contributions, expertise and knowledge is acknowledged and respected, that individual points of failure through the irreplaceable person syndrome are minimized, and that each member of a team or sub-team can step in or step up to keep the operation functioning. The motivating concept in these situations are the interests of the United States, in lieu of a set of stockholders or some fiduciary reward.

Finally, there is the concept of the burden of leadership. Responsibility can be can be delegated, but accountability cannot. Leadership in this context entails an obligation to take responsibility for both the mission of the organization and the ethical atmosphere established in its governance.

Oversight: While the necessity for integrity anticipates the level of accountability, scrutiny, oversight, and reporting for Programs in the Public Interest, the environment this encompasses is unique compared to commercial entities.

The basis for acquisition at the federal level resides in the Article Two powers of the president as the nation’s Chief Executive. Congress, however, under its Article One powers, controls appropriations and passes laws related to the processes, procedures and management of the Executive Branch.

Flowing from these authorities, the agencies within the federal government have created offices for the oversight of the public’s money, the methods of acquisition of supplies and services, and the management of contracts. Contracting Officers are given authority through a warrant to exercise their acquisition authority under the guidance and management of a senior acquisition authority.

Unlike in private business, the government operates under the concept of Actual Authority. That is, no one may commit the government except those possessing a warrant. Program Managers are appointed to provide control and administration of cost type efforts, especially those containing R&D, to shepherd these efforts over the course of what usually constitutes a multi-year effort. The Contracting Officer and/or the senior acquisition authority in these cases will delegate contract administration authority to the Program Manager. As such, it is a very powerful position.

The inherent powers of the Executive Branch and the Legislative Branches of government create a tension that is resolved through a separation of powers and the ability of one branch to—at least in most cases—check the excesses and abuses of the other: the concept of checks and balances, especially through the operation of oversight.

When these tensions cannot be resolved within the processes established for separation of powers, the third branch of government becomes involved: this is the Judicial Branch. The federal judiciary has the ability to review all laws of the United States, their constitutionality, and their adherence to the letter of the law in the case of statute.

Wherever power exists within the federal government there exists systems of checks and balances. The reason for this is clear, and Lord Acton’s warning about power corrupting and absolute power corrupting absolutely is the operational concept.

Congress passes statutes and the Judiciary interprets the law, but it is up to the Executive Branch through the appointed heads of the various departments of government down through the civil service and, in the case of the Department of Defense, the military chain of command under civilian authority, to carry out the day-to-day activities in executing the laws and business of the government. This creates a large base of administrative law and procedure.

Administrative Law and the resulting procedures in their implementation come about due to the complexities in the statutes themselves, the tests of certain provisions of the statutes in the interplay between the various branches of government, and the practicalities of execution. This body of law and procedure is oftentimes confused with “regulation” in political discussions, but it is actually the means of ensuring that the laws are faithfully executed without undue political influence. It is usually supplemented by ethical codes and regulations as well.

As a part of this ecosystem, the Program in the Public Interest must establish a discipline related to self-regulation, due diligence, good business practice, fiduciary control, ethical and professional conduct, responsibility, and accountability. Just as the branches of the federal government are constructed to ensure oversight and checks-and-balances, this also exists with normative public administration within the Executive Branch agencies.

This is often referred to both positively and, mostly among political polemicists in the negative, as the bureaucracy. The development of bureaucracies in government is noted by historians and political scientists as an indication of political stability, maturity, and expertise. Without bureaucracies, governments tend to be capricious and their policies uncertain. The practice of stare decisis—the importance of precedent in legal decisions—is also part and parcel of stability. Government power can be beneficial or coercive. Resting action on laws and not the whims or desires of the individual person is essential to the good order and discipline of the federal government.

As such, program and project managers, given the extensive latitude and inherent powers of their position, are subject to rigorous reporting, oversight, and accountability regimes in the performance of their duties. In R&D cost-type program and project management efforts, the risk is shared between the supplier and the government. And the government flows down this same regime to the contractor to ensure the integrity of the effort in the expenditure of public monies and under the performance and delivery of public contacts.

This leads us to the last important aspect of oversight: public scrutiny, which also includes the press as the Fourth Estate. When I was a young Lieutenant in the Navy working in contracts the senior officer to whom I was assign often remarked: “Never do anything that would cause you to be ashamed were it to end up being read by your grandmother in the Washington Post.”

Unlike private business where law, contractual obligation, and fiduciary responsibility are the main pressures on tolerated behavior, the government and its actions are—and must be—under constant public scrutiny. It is expected. Senior managers who champ against the bit of this check on official conduct misunderstand their role. Even the appearance of malfeasance or abuse can cause one to steer into the rocks and shoals.

Subject Matter Expertise: Given the interrelated characteristics of legality, governance, complexity, integrity, leadership, and oversight—linked to the development of a professional, permanent bureaucracy acting through a non-partisan civil service—the practices necessary to successfully shepherd such efforts has produced areas of expertise and specialization. These areas provide a basis for leveraging technology in gaining insight into meeting all of the requirements necessary to the good administration and control of Program Management in the Public Interest.

The structures and practices of program and project management are reflected in the private economy. Some of this is contractually prescribed and some of it is based on best business practice learned through hard experience. In the interplay of government and industry, most often an innovation in one has been refined and improved in the other, only to find its way back to practice on the originating “side” of the transaction.

Initially in our history this cross-fertilization occurred through extraordinary wartime measures: standardization of rifled weaponry passed down by Thomas Jefferson and Eli Whitney, and for railroad track gauge standards issued by the Union government during the Civil War, are just two examples that turned out to provide a decisive advantage against laissez faire and libertarian approaches.

As the complexity of private business concerns, particularly in the international sphere, began to mimic—and in many cases surpass—the size and technical complexity of many individual government efforts, partnerships with civil authorities and private businesses saw the need for industry standardization for both electrical and non-electrical components and processes. The former was particularly important in the “Current Wars” between Edison and Westinghouse.

These simple and earlier examples highlight the great conundrum of standardization of supply, practice and procedure in acquisition: the need for economy through competition of many sources for any particular commodity or item weighed against the efficiency and interoperability needed to continue operations. Buying multiple individual items with the same function but produced using differing standards creates a nightmare of suboptimization. Overly restrictive standards can and have had the effect of reducing competition and stifling innovation, especially if the standard is proprietary.

In standards setting there are several interests involved that must be taken into account: the technical expertise (technical, qualitative, etc.) that underlies the standard, the public interest in ensuring a healthy marketplace that rewards innovation, diversity, and price competitiveness, the need for business-to-business cooperation and synergy in the marketplace, and the preponderance of practice, among others. In the Defense industry this also includes national security concerns.

This last consideration provides an additional level of tension between private industry and government interests. In the competition for market share and market niches, businesses are playing a zero-sum game that shifts between allies and competitors. Still, the interest of individual actors is focused on making a proprietary product or service dominant in the target market.

Government, on the other hand, particularly one that operates as a republic based on democratic processes and virtues and a commitment to equal rights, has a different set of interests that are, in many cases, diametrically opposed to those of individual players in the marketplace. Government needs and desires a broad choice of sources for what it needs, while ensuring that qualitative standards are met under a fair and reasonable price. When it does find innovation, it seeks to reward it, but only for the limited terms, conditions, and period of the contractual instrument.

The greater the risk in these cases—especially when cost risk is shared—the greater the need for standards, especially qualitative ones. The longer the term of the effort, the greater the need for checks and balances through evaluation, review, and oversight. The greater the dollar value, the greater importance for fiduciary and contractual accountability.

Thus, subject matter expertise has evolved over time, aligned with the functions and end items being developed and delivered. These areas include:

Estimating – A critical part of program and project management, this is a discipline with highly specialized quantitative methods for estimating and projecting project costs, resources, and duration. It is part of the planning phase prior to program or project inception. It can be used to support budget planning prior to program approval, during negotiations and, after award, to inform the project plan.

Systems Engineering – as described by the International Council of Systems Engineering, “a transdisciplinary and integrative approach to enable the successful realization, use, and retirement of engineered systems, using systems principles and concepts, and scientific, technological, and management methods.”

As it relates to program and project management, the technical documents related to providing the basis and structure of the lifecycle management of the end item application, including the application of technical standards, measures of effectiveness, measures of performance, key performance parameters, and technical performance measures. In simplistic terms, systems engineering defines when the item under R&D reaches the state of “done.”

Financial Management – at the program and project management level, the planning, organizing, directing and controlling the financial activities such as procurement and utilization of funds to adhere to the limitations of law and consistent with the terms and conditions of the contract and the its ancillary planning and execution documents.

At its core, financial management within this discipline includes the planning, programming, budgeting, and execution process for the financial requirements of successful program execution. As with any individual enterprise, cashflow for required activities with the right type of money determined by Congressional appropriation presents a unique and specialized skillset under program management in the public interest. Oftentimes the lack of funds necessary to address a particular programmatic risk or challenge can be just as decisive to program execution and success as any technical challenge.

Risk and Uncertainty – the concept of risk and uncertainty have evolved over time. Under classical economics (both Keynes and Knight), risk is where all of the future events and consequences of an action are known, but where specific outcomes are unknown. As such, probability calculus is applied to determine the risk management: mitigation and handling. Uncertainty, under this definition, is unknowable events that will result from our actions and is implicit in human action. There is no probability calculus or risk buy-down that can address areas of uncertainty. These definitions are also accepted under the concept of complexity economics.

My good colleague Glen Alleman (2013) at his blog, Herding Cats, casts risk as a product of uncertainty. This is a reordering of definitions, but not unuseful. Under Glen’s approach, uncertainty is broken into aleatory and epistemic uncertainty. The first—aleatory—comes from a random process, what Keynes, Knight, et al. would define as classical uncertainty. The second—epistemic—comes from lack of knowledge. The first is irreducible, which is consistent with classical economics and complexity economics; the second is subject to probability analysis and risk handling methodologies.

Both risk and uncertainty—aleatory and epistemic—occur within all phases and under each discipline within the project management environment. Any human action involves these forces of cause-and-effect and uncertainty—and limit our actions under the concept of “free will.”

Planning and Scheduling – usually these have been viewed as separate entities, but they are, in fact, part of a continuum, as are all of the disciplines mentioned, but more on that later in these blogs.

Planning involves the ability to derive the products of both the contract terms and conditions, and the systems engineering process. The purpose is to develop a high-level, time-phased plan that captures program events, deliverables, requirements, significant accomplishment criteria, and basic technical performance management achievement that will be the basis for a more detailed integrated master schedule.

The scheduling discipline is tasked with further delineating the summary tasks into schedule activities based on critical path methodology. A common refrain when I worked on the government side of program management was that you cannot eat an elephant in one gulp: you have to eat it one piece at a time.

As it relates to this portion of project methodology, I have, over the years, heard people say that planning and scheduling is more of an art instead of a science. Yet, the artifacts upon which our planning documents rest exist as part of the acquisition process and our systems and procedures are mature and largely standardized. The methods of systems engineering are precise and consistent.

The lexicon of planning and scheduling, regardless of the software applications or manual methods used, describe the same phenomenon and concepts, despite slightly different—and oftentimes proprietary—terminology. The concept of critical path analysis is well documented in the literature with slight, though largely insignificant, differences in application.

What appears as art is, in reality, a process that involves a great deal of complexity because these are the documents upon which all of the moving parts of the program are documented. Rather than art, it is a discipline that requires attention to detail and collaboration, aside from the power of computing.

Resource Management – as with planning and scheduling, resource management consists of a detailed accounting of the people, equipment, monies, and suppliers that are required to achieve the activities detailed in the program schedule.

In the detailed and specialized planning of projects and programs in the public interest, these efforts are cross-referenced and further delineated to the actual work that needs to be completed. A Work Breakdown Structure (or WBS), is the method of time-phasing the work using detailed tasks that integrate scope, cost, and schedule at the lowest level of achievement.

Baselining and Performance Management – are essential for project control in this environment. In this case, project and program schedule, cost, and resources are (ideally) risk adjusted and a performance management baseline is established: the basis for the assessment and control of the project.

This leads us to the methodology that is always on the cusp of being the Ozymandias of program management: earned value management or EVM. The discipline of EVM arose out of the Space Age era of the 1960s. The premise is simple: when undertaking any complex effort there is a finite amount of money and resources, and a target date for the needed end item. We need a method to determine whether the actual work performed in terms of budgeted resources and time is tracking to the plan to produce the desired end item application.

When looking at the utility of EVM, one must ask: while each of the disciplines noted above also track achievement over the lifecycle of the project or program, do any combine an analysis against budgeted time and resources? The answer is no, and so EVM is essential to management of these efforts.

Still, our other disciplines also track important information that is not captured by EVM. Thus, the entire corpus of our disciplines represents the project and program ecosystem. These processes, procedures, and the measures derived from them are interconnected. It is this salient fact that points us in the direction regarding the future of program management.

Conclusions from Part One

Given that we have outlined the unique and distinctive characteristics of public interest program management, the environment and basis upon which such program management rests, and the highly developed disciplines that have evolved as a result of the experience in system development, deployment, and lifecycle management, our inquiry must next explore the evolutionary nature of the program organization itself. Once identified and delineated, we must then determine the place of program organization within the context of developments in systems and information theory which will give us insight into the future of program management.

Take Me To The River, Part 3, Technical Performance and Risk Management Digital Elements of Integrated Program Management

Part three of this series of articles on the elements of Integrated Program and Project Management will focus on two additional areas of IPM: technical performance and risk management. Prior to jumping in, however–and given the timeframe over which I’ve written this series–a summary to date is in order.

The first part of our exploration into IPM digital inventory concerned cost elements. Cost in this sense was broadly defined as any cost elements that need to be of interest to a project or program managers and their  teams. I first clarified our terms by defining the differences between project and program management–and how those differences will influence our focus. Then I outlined the term cost as falling into the following categories:

  1. Contract costs and the cost categories within the organizational hierarchy;
  2. Cost estimates, “colors” of money where such distinctions exist, and cashflow;
  3. Additional costs that relate to the program or project effort that are not always directly attributed to the effort, such as PMA, furnished materials or labor, corollary and supporting efforts on the part of the customer, and other overhead and G&A type costs;
  4. Contract cost performance under earned value management (EVM); and
  5. Portfolio management considerations and total cost of ownership.

The second part of this exposition concerned schedule elements, that is, time-phased planning and performance that is essential to any project or program effort. The article first discussed the primacy of the schedule in project and program planning and execution, given its ties in defining the basis for the cost elements addressed in the first part of the series. I then discussed the need for integrated planning as the basis for a valid executable schedule and PMB, the detailed elements and citations of the sources of that information in the literature and formal guidance, the role of framing assumptions in the construction of schedule and cost plans with its holistic approach to go/no-go decision-making, and, finally, the role of the schedule in establishing the project and program battle rhythm.

Now, in this final section, we will determine the other practical elements of IPM beyond even my expansive view of cost and schedule integration.

Technical Performance Management

Given this paper that resulted from a programmatic effort in Navy regarding Technical Performance Management (TPM), it is probably not surprising that I will start here. My core paper in the link above represents what I viewed as an initial effort at integration of TPM to determine impacts of that performance within program cost performance (EVM) projections. But this approach was based on the following foundations:

a. That the solution needed to tie technical achievement to EVM so that it represented greater fidelity to performance than what I viewed as indirect and imprecise methods; such as WBS elements that contained partial or tangential relationships to technical performance measures, and more subjective and arbitrary methods, such as percent complete.

b. That the approach needed to be tied to established systems engineering methods of technical risk management.

c. That the solution should be simple to implement and be statistically valid in its results, tested by retrospective analyses that performed forensic what-if analysis against the ultimate results.

One need only to look at the extensive bibliography that accompanied my paper to understand that there were clear foundations for TPM, but it remained–and in some quarters remains–a controversial concept that provoked resistance, though programs clearly note achievement of technical requirements. For example, the foundations of technical risk management and tracking that the paper cited were in use at what was Martin Marietta for many years. Thus, why the resistance to change?

First, I think, is that the domain of project performance has rested too long in the hands of the EVM community with its historical foundations in cost and financial management, with a risk averse approach to new innovations. Second, given this history, the natural differences between program management, systems engineering, and earned value SMEs created a situation where there just wasn’t the foundation necessary for any one group to take ownership of this development in systems and business intelligence improvement. Even in industry, such cross-domain initiatives tend to initially garner both skepticism, if not outright cynicism, and resistance by personnel unsure of how the new measures will affect assessment of their work.

But keep in mind that, dating myself a bit, this is the same type of reaction that organizations experienced during the first wave of digitization of work. The reaction to each initiative that I witnessed, from the introduction of desktop computers connected to a central server, to the introduction of the first PCs, to the digitization of work products were met with the common refrain at the time that it was too experimental, or too transient, or too unstable, or too unproven, until it wasn’t any of those things.

I also overstate this resistance a bit. Over the last 20 years organizations within the military services adopted this method–or a variation–of TPM integration, as have some commercial companies. Furthermore, thinking and contributions on TPM have advanced in the intervening years.

The elements of technical performance management can be found in the language of the scope being planned. The brilliant paper authored by Glen B. Alleman, Thomas J. Coonce, and Rick A. Price entitled “Building a Credible Performance Measurement Baseline”, establishes the basis for tying project and program performance to technical achievement. These elements are measures of effectiveness (MoEs), measures of performance (MoPs), technical performance measures (TPMs), and key performance parameters and indicators (KPPs and KPIs). Taken together these define the framing assumptions for the project or program.

When properly constructing the systems, procedures, and artifacts from the decomposition of planning documents and performance language, the proper assignment of these elements to the WBS and specific work packages establishes a strong foundation for tying project and program success to both overall technical performance and the framing assumptions implicit in the effort.

What this means is that there also may be a technical performance baseline, which acts in parallel to the cost-focused performance management baseline. This technical performance baseline is the same as the work that is planned at the work package level for planned work. The assessment of progress is further decomposed to look at the timeframe at that point of progress within the context of the integrated master schedule (the IMS). We ask ourselves as a function of risk: what is the chance of achieving the next threshold in our technical performance plan?

As with all elements of work, our MoEs, MoPs, TPMs, KPPs, and KPIs do not reside at the same level of overall performance management and tracking within the WBS hierarchy. Some can be tracked to the lowest level, usually at work package, some will have contributions from lower levels and be summarized at the control account level, and others are at the total project or program level, with contributors from specific lower levels of the WBS structure.

A common example of what is claimed is a difficult technical performance measure is the factor of weight in aircraft design and production. Weight is an essential factor and must be in alignment with the mission of the aircraft. For example, if an aircraft is being built for the Navy, chances are high that the expectation is for it to be able to take off and land on a moving carrier deck. Take off requires coming up to airspeed very quickly. Landings are especially hard, since they are essentially controlled crashes augmented by an arresting gear. Airframes, avionics, and engines must operate in a salt water environment that involves a metal ship. The electro-magnetic effects alone, if they are not mitigated in the design and systems on both aircraft and ship, will significantly degrade the ability of the aircraft to operate as intended. Controlling weight in this case is essential, especially when one considers the need for fuel, ordnance, and avoiding being detected and shot down.

In current practice, the process of tracking weight over the life of aircraft design and development is tightly controlled. It is a function of tradeoff analysis and decision-making with contributors from many sub-elements of the WBS hierarchy. Thus, the use of the factor of weight as an argument to defeat the need to tightly integrate technical measures to the performance measurement baseline is a canard. On the contrary, it is an argument for tighter and broader integration of IPM data and, in particular, ties our systems to–and thus making the projections and the basis of our decision-making a function of– risk management, which is the next topic.

Risk Management Elements and Integration

There is a good deal of literature on risk, so I will confine this section to how risk in terms of integrated project and program management.

For many subdomains within the project and program management, when one mentions the term “risk management” the view often encountered is that the topic at hand is applying Monte Carlo analysis using non-random random numbers to the integrated master schedule (IMS) to determine the probabilities of a range of task durations and completions. This is known as a Schedule Risk Analysis or SRA.

Most of the correlations today are based on the landmark paper by Philip M. Lurie and Matthew S. Goldberg with the sexy title, “An approximate method for sampling correlated random variables from partially specified distributions”. With Monte Carlo informed by Lurie-Goldberg (for short) we then can make inferences as to alternative critical paths and near-critical paths for time-phasing our work. Also, the contribution of each task in terms of its criticality and contribution to the critical path can be measured. Sensitivity analysis elements identifies the most critical risk elements.

If the integrated master schedule is truly integrated to resource and cost, Lurie-Goldberg allows us to defeat the single-point estimate heavy projections of EVM to calculate a range of cost outcomes by probability distribution. This same type of analysis can be done against the time-phased PMB.

But that is just one area of risk management, which is known as quantitative risk. Another area of risk which should be familiar to project and program managers is qualitative risk. The project and programmatic risk analysis of qualitative risk involves the following steps:

1. Risk identification

2. Risk evaluation

3. Risk handling, and

4. Continual risk management

This is a closed loop system, which garners a risk register, risk ranking, a risk matrix, risk handling and mitigation plans, and a risk handling waterfall chart. These artifacts of risk analysis will also require the monitoring of risk triggers, and cross-referencing to risk ownership.

Once again, though cost impacts are also calculated, with their probability of manifesting, the strongest tie of risk management begins with the integrated master schedule. Thus, conditional and probabilistic branching will provide the project and program team with a step-by-step what-if? analysis that provides alternative schedules that will also provide ranges of cost impact.

Mainstreaming Risk Management and TPM into IPM

In reality, project and program management is simply monitoring and forecasting without technical performance and risk management. Yet, these sub-domains are oftentimes confined to a few specialists or viewed as a dichotomous and independent processes under the general duties of the team.

The economic urgency and essentiality of integrated project and program management is the realization that technical achievement of the product, and the assessment and handling of risks along the course of that achievement, are at the core of project and program management.

Back to School Daze Blogging–DCMA Investigation on POGO, DDSTOP, $600 Ashtrays,and Epistemic Sunk Costs

Family summer visits and trips are in the rear view–as well as the simultaneous demands of balancing the responsibilities of a, you know, day job–and so it is time to take up blogging once again.

I will return to my running topic of Integrated Program and Project Management in short order, but a topic of more immediate interest concerns the article that appeared on the website for pogo.org last week entitled “Pentagon’s Contracting Gurus Mismanaged Their Own Contracts.” Such provocative headlines are part and parcel of organizations like POGO, which have an agenda that seems to cross the line between reasonable concern and unhinged outrage with a tinge conspiracy mongering. But the content of the article itself is accurate and well written, if also somewhat ripe with overstatement, so I think it useful to unpack what it says and what it means.

POGO and Its Sources

The source of the article comes from three sources regarding an internal Defense Contract Management Agency (DCMA) IT project known as the Integrated Workflow Management System (IWMS). These consist of a September 2017 preliminary investigative report, an April 2018 internal memo, and a draft of the final report.

POGO begins the article by stating that DCMA administers over $5 trillion in contracts for the Department of Defense. The article erroneously asserts that it also negotiates these contracts, apparently not understanding the process of contract oversight and administration. The cost of IWMS was apparently $46.6M and the investigation into the management and administration of the program was initiated by the then-Commander of DCMA, Lieutenant General Wendy Masiello, shortly before she retired from the government in May 2017.

The implication here, given the headline, seems to be that if there is a problem in internal management within the agency, then that would translate into questioning its administration of the $5 trillion in contract value. I view it differently, given that I understand that there are separate lines of responsibility in the agency that do not overlap, particularly in IT. Of the $46.6M there is a question of whether $17M in value was properly funded. More on this below, but note that, to put things in perspective, $46.6M is .000932% of DCMA’s oversight responsibility. This is aside from the fact that the comparison is not quite correct, given that the CIO had his own budget, which was somewhat smaller and unrelated to the $5 trillion figure. But I think it important to note that POGO’s headline and the introduction of figures, while sounding authoritative, are irrelevant to the findings of the internal investigation and draft report. This is a scare story using scare numbers, particularly given the lack of context. I had some direct experience in my military career with issues inspired by the POGO’s founders’ agenda that I will cover below.

In addition to the internal investigation on IWMS, there was also an inspector general (IG) investigation of thirteen IT services contracts that resulted in what can only be described as pedestrian procedural discrepancies that are easily correctable, despite the typically overblown language found in most IG reports. Thus, I will concentrate on this post on the more serious findings of the internal investigation.

My Own Experience with DCMA

A note at this point on full disclosure: I have done business with and continue to do business with DCMA, both as a paid supplier of software solutions, and have interacted with DCMA personnel at publicly attended professional forums and workshops. I have no direct connection, as far as I am aware, to the IWMS program, though given that the assessment is to the IT organization, it is possible that there was an indirect relationship. I have met Lieutenant General Masiello and dealt with some of her subordinates not only during her time at DCMA, but also in some of her previous assignments in Air Force. I always found her to be an honest and diligent officer and respect her judgment. Her distinguished career speaks for itself. I have talked on the telephone to some of the individuals mentioned in the article on unrelated matters, and was aware of their oversight of some of my own efforts. My familiarity with all of them was both businesslike and brief.

As a supplier to DCMA my own contracts and the personnel that administer them were, from time-to-time, affected by the fallout from what I now know to have occurred. Rumors have swirled in our industry regarding the alleged mismanagement of an IT program in DCMA, but until the POGO article, the reasons for things such as a temporary freeze and review of existing IT programs and other actions were viewed as part and parcel of managing a large organization. I guess the explanation is now clear.

The Findings of the Investigation

The issue at hand is largely surrounding the method of source selection, which may have constituted a conflict of interest, and the type of money that was used to fund the program. In reading the report I was reminded of what Glen Alleman recently wrote in his blog entitled “DDSTOP: The Saga Continues.” The acronym DDSTOP means: Don’t Do Stupid Things On Purpose.

There is actually an economic behavioral principle for DDSTOP that explains why people make and double down on bad decisions and irrational beliefs. It is called epistemic sunk cost. It is what causes people to double down in gambling (to the great benefit of the house), to persist in mistaken beliefs, and, as stated in the link above, to “persist with the option which they have already invested in and resist changing to another option that might be more suitable regarding the future requirements of the situation.” The findings seem to document a situation that fits this last description.

In going over the findings of the report, it appears that IWMS’s program violated the following:

a. Contractual efforts in the program that were appropriate for the use of Research, Development, Test and Evaluation (R,D,T & E) funds as opposed to those appropriate for O&M (Operations and Maintenance) funds. What the U.S. Department of Defense calls “color of money.”

b. Amounts that were expended on contract that exceeded the authorized funding documents, which is largely based on the findings regarding the appropriate color of money. This would constitute a serious violation known as an Anti-Deficiency Act violation which, in layman’s terms, is directed to punish public employees for the misappropriation of government funds.

c. Expended amounts of O&M that exceeded the authorized levels.

d. Poor or non-existent program management and cost performance management.

e. Inappropriate contracting vehicles that, taken together, sidestepped more stringent oversight, aside from the award of a software solutions contract to the same company that defined the agency’s requirements.

Some of these are procedural and some are serious, particularly the Anti-deficiency Act (ADA) violations, are serious. In the Contracting Officer’s rulebook, you can withstand pedestrian procedural and administrative findings that are part and parcel of running an intensive contracting organization that acquires a multitude of supplies and services under deadline. But an ADA violation is the deadly one, since it is a violation of statute.

As a result of these findings, the recommendation is for DCMA to lose acquisition authority over the DoD micro-contracting level ($10,000). Organizationally and procedurally, this is a significant and mission-disruptive recommendation.

The Role and Importance of DCMA

DCMA performs an important role in contract compliance and oversight to ensure that public monies are spent properly and for the intended purpose. They perform this role mostly on contracts that are negotiated and entered into by other agencies and the military services within the Department of Defense, where they are assigned contract administration duties. Thus, the fact that DCMA’s internal IT acquisition systems and procedures were problematic is embarrassing.

But some perspective is necessary because there is a drive by some more extreme elements in Congress and elsewhere that would like to see the elimination of the agency. I believe that this would be a grave mistake. As John F. Kennedy is quoted as having said: “You don’t tear your fences down unless you know why they were put up.”

For those of you who were not around prior to the formation of DCMA or its predecessor organization, the Defense Contract Management Command (DCMC), it is important to note that the formation of the agency is a result of acquisition reform. Prior to 1989 the contract administration services (CAS) capabilities of the military services and various DoD offices varied greatly in capability, experience, and oversight effectiveness.Some of these duties had been assigned to what is now the Defense Logistics Agency (DLA), but major acquisition contracts remained with the Services.

For example, when I was on active duty as a young Navy Supply Corps Officer as part of the first class that was to be the Navy Acquisition Corps, I was taught cradle-to-grave contracting. That is, I learned to perform customer requirements development, economic analysis, contract planning, development of a negotiating position, contract negotiation, and contract administration–soup to nuts. The expense involved in developing and maintaining the skill set required of personnel to maintain such a broad-based expertise is unsustainable. For analogy, it is as if every member of a baseball club must be able to play all nine positions at the same level of expertise; it is impossible.

Furthermore, for contract administration a defense contractor would have contractual obligations for oversight in San Diego, where I was stationed, that were different from contracts awarded in Long Beach or Norfolk or any of the other locations where a contracting office was located. Furthermore, the military services, having their own organizational cultures, provided additional variations that created a plethora of unique requirements that added cost, duplication, inconsistency, and inter-organizational conflict.

This assertion is more than anecdotal. A series of studies were commissioned in the 1980s (the findings of which were subsequently affirmed) to eliminate duplication and inconsistency in the administration of contracts, particularly major acquisition programs. Thus, DCMC was first established under DLA and subsequently became its own agency. Having inherited many of the contracting field office, the agency has struggled to consolidate operations so that CAS is administered in a consistent manner across contracts. Because contract negotiation and program management still resides in the military services, there is a natural point of conflict between the services and the agency.

In my view, this conflict is a healthy one, as all power in the hands of a single individual, such as a program manager, would lead to more fraud, waste, and abuse, not less. Internal checks and balances are necessary in proper public administration, where some efficiency is sacrificed to accountability. It is not just the goal of government to “make the trains run on time”, but to perform oversight of the public’s money so that there is accountability in its expenditure, and integrity in systems and procedures. In the case of CAS, it is to ensure that what is being procured actually gets delivered in conformance to the contract terms and conditions designed to reduce the inherent risk in complex acquisition programs.

In order to do its job effectively, DCMA requires innovative digital systems to allow it to perform its CAS function. As a result, the agency must also possess an acquisition capability. Given the size of the task at hand in performing CAS on over $5 trillion of contract effort, the data involved is quite large, and the number of personnel geographically distributed. The inevitable comparisons to private industry will arise, but few companies in the world have to perform this level of oversight on such a large economic scale, which includes contracts comprising every major supplier to the U.S. Department of Defense, involving detailed knowledge of the management control systems of those companies that receive the taxpayer’s money. Thus, this is a uniquely difficult job. When one understands that in private industry the standard failure rate of IT projects is more than 70% percent, then one cannot help but be unimpressed by these findings, given the challenge.

Assessing the Findings and Recommendations

There is a reason why internal oversight documents of this sort stay confidential–it is because these are preliminary/draft findings and there are two sides to every story which may lead to revisions. In addition, reading these findings without the appropriate supporting documentation can lead one to the wrong impression and conclusions. But it is important to note that this was an internally generated investigation. The checks and balances of management oversight that should occur, did occur. But let’s take a close look at what the reports indicate so that we can draw some lessons. I also need to mention here that POGO’s conflation of the specific issues in this program as a “poster child” for cost overruns and schedule slippage displays a vast ignorance of DoD procurement systems on the part of the article’s author.

Money, Money, Money

The core issue in the findings revolves around the proper color of money, which seems to hinge on the definition of Commercial-Off-The-Shelf (COTS) software and the effort that was expended using the two main types of money that apply to the core contract: RDT&E and O&M.

Let’s take the last point first. It appears that the IWMS effort consisted of a combination of COTS and custom software. This would require acquisition, software familiarization, and development work. It appears that the CIO was essentially running a proof-of-concept to see what would work, and then incrementally transitioned to developing the solution.

What is interesting is that there is currently an initiative in the Department of Defense to do exactly what the DCMA CIO did as part of his own initiative in introducing a new technological approach to create IWMS. It is called Other Transactional Authority (OTA). The concept didn’t exist and was not authorized until the 2016 NDAA and is given specific statutory authority under 10 U.S.C. 2371b. This doesn’t excuse the actions that led to the findings, but it is interesting that the CIO, in taking an incremental approach to finding a solution, also did exactly what was recommended in the 2016 GAO report that POGO references in their article.

Furthermore, as a career Navy Supply Corps Officer, I have often gotten into esoteric discussions in contracts regarding the proper color of money. Despite the assertion of the investigation, there is a lot of room for interpretation in the DoD guidance, not to mention a stark contrast in interpreting the proper role of RDT&E and O&M in the procurement of business software solutions.

When I was on the NAVAIR staff and at OSD I ran into the difference in military service culture where what Air Force financial managers often specified for RDT&E would never be approved by Navy financial managers where, in the latter case, they specified that only O&M dollars applied, despite whether development took place. Given that there was an Air Force flavor to the internal investigation, I would be interested to know whether the opinion of the investigators in making an ADA determination would withstand objective scrutiny among a panel of government comptrollers.

I am certain that, given the differing mix of military and civil service cultures at DCMA–and the mixed colors of money that applied to the effort–that the legal review that was sought to resolve the issue. One of the principles of law is that when you rely upon legal advice to take an action that you have a defense, unless your state of mind and the corollary actions that you took indicates that you manipulated the system to obtain a result that shows that you intended to violate the law. I just do not see that here, based on what has been presented in the materials.

It is very well possible that an inadvertent ADA violation occurred by default because of an improper interpretation of the use of the monies involved. This does not rise to the level of a scandal. But going back to the confusion that I have faced from my own experiences on active duty, I certainly hope that this investigation is not used as a precedent to review all contracts under the approach of accepting a post-hoc alternative interpretation by another individual who just happens to be an inspector long after a reasonable legal determination was made, regardless of how erroneous the new expert finds the opinion. This is not an argument against accountability, but absent corruption or criminal intent, a legal finding is a valid defense and should stand as the final determination for that case.

In addition, this interpretation of RDT&E vs. O&M relies upon an interpretation of COTS. I daresay that even those who throw that term around and who are familiar with the FAR fully understand what constitutes COTS when the line between adaptability and point solutions is being blurred by new technology.

Where the criticism is very much warranted are those areas where the budget authority would have been exceeded in any event–and it is here that the ADA determination is most damning. It is one thing to disagree on the color of money that applies to different contract line items, but it is another to completely lack financial control.

Part of the reason for lack of financial control was the absence of good contracting practices and the imposition of program management.

Contracts 101

While I note that the CIO took an incremental approach to IWMS–what a prudent manager would seem to do–what was lacking was a cohesive vision and a well-informed culture of compliance to acquisition policy that would avoid even the appearance of impropriety and favoritism. Under the OTA authority that I reference above as a new aspect of acquisition reform, the successful implementation of a proof-of-concept does not guarantee the incumbent provider continued business–salient characteristics for the solution are publicized and the opportunity advertised under free and open competition.

After all, everyone has their favorite applications and, even inadvertently, an individual can act improperly because of selection bias. The procurement procedures are established to prevent abuse and favoritism. As a solution provider I have fumed quite often where a selection was made without competition based on market surveys or use of a non-mandatory GSA contract, which usually turn out to be a smokescreen for pre-selection.

There are two areas of fault on IMWS from the perspective of acquisition practice, and another in relation to program management.

These are the initial selection of Apprio, which had laid out the initial requirements and subsequently failed to have the required integration functionality, and then, the selection of Discover Technologies under a non-mandatory GSA Blanket Purchase Agreement (BPA) contract under a sole source action. Furthermore, the contract type was not appropriate to the task at hand, and the arbitrary selection of Discover precluded the agency finding a better solution more fit to its needs.

The use of the GSA BPA allowed managers, however, to essentially spit the requirements to stay below more stringent management guidelines–an obvious violation of acquisition regulation that will get you removed from your position. This leads us to what I think is the root cause of all of these clearly avoidable errors in judgment.

Program Management 101

Personnel in the agency familiar with the requirements to replace the aging procurement management system understood from the outset that the total cost would probably fall somewhere between $20M and $40M. Yet all effort was made to reduce the risk by splitting requirements and failing to apply a programmatic approach to a clearly complex undertaking.

This would have required the agency to take the steps to establish an acquisition strategy, open the requirement based on a clear performance work statement to free and open competition, and then to establish a program management office to manage the effort and to allow oversight of progress and assessment of risks in a formalized environment.

The establishment of a program management organization would have prevented the lack of financial control, and would have put in place sufficient oversight by senior management to ensure progress and achievement of organizational goals. In a word, a good deal of the decision-making was based on doing stupid things on purpose.

The Recommendations

In reviewing the recommendations of the internal investigation, I think my own personal involvement in a very similar issue from 1985 will establish a baseline for comparison.

As I indicated earlier, in the early 1980s, as a young Navy commissioned officer, I was part of the first class of what was to be the Navy Acquisition Corps, stationed at the Supply Center in San Diego, California. I had served as a contracting intern and, after extensive education through the University of Virginia Darden School of Business, the extended Federal Acquisition Regulation (FAR) courses that were given at the time at Fort Lee, Virginia, and coursework provided by other federal acquisition organizations and colleges, I attained my warrant as a contracting officer. I also worked on acquisition reform issues, some of which were eventually adopted by the Navy and DoD.

During this time NAS Miramar was the home of Top Gun. In 1984 Congressman Duncan Hunter (the elder not the currently indicted junior of the same name, though from the same San Diego district), inspired by news of $7,600 coffee maker and a $435 hammer publicized by the founders of POGO, was given documents by a disgruntled employee at the base regarding the acquisition of replacement E-2C ashtrays that had a cost of $300. He presented them to the Base Commander, which launched an investigation.

I served on the JAG investigation under the authority of the Wing Commander regarding the acquisitions and then, upon the firing of virtually the entire chain of command at NAS Miramar, which included the Wing Commander himself, became the Officer-in-Charge of Supply Center San Diego Detachment NAS Miramar. Under Navy Secretary Lehman’s direction I was charged with determining the root cause of the acquisition abuses and given 60-90 days to take immediate corrective action and clear all possible discrepancies.

I am not certain who initiated the firings of the chain of command. From talking with contemporaneous senior personnel at the time it appeared to have been instigated in a fit of pique by the sometimes volcanic Secretary of Defense Caspar Weinberger. While I am sure that Secretary Weinberger experienced some emotional release through that action, placed in perspective, his blanket firing of the chain of command, in my opinion, was poorly advised and counterproductive. It was also grossly unfair, given what my team and I found as the root cause.

First of all, the ashtray was misrepresented in the press as a $600 ashtray because during the JAG I had sent a sample ashtray to the Navy industrial activity at North Island with a request to tell me what the fabrication of one ashtray would cost and to provide the industrial production curve that would reduce the unit price to a reasonable level. The figure of $600 was to fabricate one. A “whistleblower” at North Island took this slice of information out of context and leaked it to the press. So the $300 ashtray, which was bad enough, became the $600 ashtray.

Second, the disgruntled employee who gave the files to Congressman Hunter had been laterally assigned out of her position as a contracting officer by the Supply Officer because of the very reason that the pricing of the ashtray was not reasonable, among other unsatisfactory performance measures that indicated that she was not fit to perform those duties.

Third, there was a systemic issue in the acquisition of odd parts. For some reason there was an ashtray in the cockpit of the E-2C. These aircraft were able to stay in the air an extended period of time. A pilot had actually decided to light up during a local mission and, his attention diverted, lost control of the aircraft and crashed. Secretary Lehman ordered corrective action. The corrective action taken by the squadron at NAS Miramar was to remove the ashtray from the cockpit and store them in a hangar locker.

Four, there was an issue of fraud. During inspection the spare ashtrays were removed and deposited in the scrap metal dumpster on base. The tech rep for the DoD supplier on base retrieved the ashtrays and sold them back to the government for the price to fabricate one, given that the supply system had not experienced enough demand to keep them in stock.

Fifth, back to the systemic issue. When an aircraft is to be readied for deployment there can be no holes representing missing items in the cockpit. A deploying aircraft with this condition is then grounded and a high priority “casuality report” or CASREP is generated. The CASREP was referred to purchasing which then paid $300 for each ashtray. The contracting officer, however, feeling under pressure by the high priority requisition, did not do due diligence in questioning the supplier on the cost of the ashtray. In addition, given that several aircraft deploy, there were a number of these requisitions that should have led the contracting officer to look into the matter more closely to determine price reasonableness.

Furthermore, I found that buying personnel were not properly trained, that systems and procedures were not established or enforced, that the knowledge of the FAR was spotty, and that procurements did not go through multiple stages of review to ensure compliance with acquisition law, proper documentation, and administrative procedure.

Note that in the end this “scandal” was born by a combination of systemic issues, poor decision-making, lack of training, employee discontent, and incompetence.

I successfully corrected the issues at NAS Miramar during the prescribed time set by the Secretary of the Navy, worked with the media to instill public confidence in the system, built up morale, established better customer service, reduced procurement acquisition lead times (PALT), recommended necessary disciplinary action where it seemed appropriate, particularly in relation to the problematic employee, recovered monies from the supplier, referred the fraud issues to Navy legal, and turned over duties to a new chain of command.

NAS Miramar procurement continued to do its necessary job and is still there.

What the higher chain of command did not do was to take away the procurement authority of NAS Miramar. It did not eliminate or reduce the organization. It did not close NAS Miramar.

It requires leadership and focus to take effective corrective action to not only fix a broken system, but to make it better while the corrective actions are being taken. As I outlined above, DCMA performs an essential mission. As it transitions to a data-driven approach and works to reduce redundancy and inefficiency in its systems, it will require more powerful technologies to support its CAS function, and the ability to acquire those technologies to support that function.

Take Me To The River, Part 2, Schedule Elements–A Digital Inventory of Integrated Program Management Elements

Recent attendance at various forums to speak has interrupted the flow of this series on IPM elements. Among these venues I was engaged in discussions regarding this topic, as well as the effects of acquisition reform on the IT, program, and project management communities in the DoD and A&D marketplace.

For this post I will restrict the topic to what are often called schedule elements, though that is a nebulous term. Also, one should not draw a conclusion that because I am dealing with this topic following cost elements, that it is somehow inferior in importance to those elements. On the contrary, planning and scheduling are integral to applying resources and costs, in tracking cost performance, and in our systemic analysis its activities, artifacts, and elements are antecedent to cost element considerations.

The Relative Position of Schedule

But the takeaway here is this: under no circumstances should any program or project manager believe that cost and schedule systems represent a dichotomy, nor a hierarchy, of disciplines. They are interdependent and the behavior noted in one will be manifested in the other.

This is important to keep in mind, because the software industry, more than any other, has been responsible for reinforcing and solidifying this (erroneous) perspective. During the first generation of desktop application development, software solutions were built to automate the functions of traditional line and staff functions. This made a great deal of sense.

From a sales and revenue perspective, it is easier to sell a limited niche software “tool” to an established customer base that will ensure both quick acceptance and immediate realization of productivity and labor savings. The connection from the purchase to ROI was easily traceable in the time span and at the level of the person performing their workaday tasks.

Thus, solutions were built to satisfy the needs of cost analysts, schedule analysts, systems engineers, cost estimators, and others. Where specific solutions left gaps, such spreadsheet solutions such as Microsoft Excel were employed to fill them. It was in no one’s interest to go beyond their core competency. Once a dominant or set of dominant incumbents (a monoposony) inhabited a niche, they employed the usual strategies for “stickiness” to defend territory and raise barriers to new entries.

What was not anticipated by many organizations was the fact that once you automate a function that the nature of the system, if one is to implement the most effective organizational structure, is transformed to conform to the most efficient flow and use of data–and its resulting transformation into information and intelligence. Oftentimes the skill set to use the intelligence does not exist because the resulting insights and synergy involved in taking larger and more comprehensive datasets which themselves are more credible and accurate was not anticipated in adjusting the organizational structure.

This is changing and must change, because the old way of using limited sets of data in the age of big(ger) data that provide a more comprehensive view of business conditions is not tenable. At least, not if a company or organization wants to stay relevant or profitable.

Characteristics and Basic Elements of the Project Schedule

If one were to perform a Google search of project schedule while reading this post, you would find a number of definitions, some of which overlap. For example, the PMBOK defines a schedule as, quite simply, “the planned dates for performing activities and the planned dates for meeting milestones.”

Thus our elements include planned dates, activities, and milestones. But is that all? Under this definition, any kind of plan, from a minor household renovation or upgrade to building an aircraft carrier would contain only these elements.

I don’t think so.

For complex projects and programs, which is the focus on this blog, our definition of a project schedule is a bit more comprehensive. If you go to the aforementioned A Guide for DoD Program Managers mentioned in my last post, you will find even less specificity.

The reason for this is that what we define as a project schedule is part and parcel of the planning phase of a project, which is then further specified in the specific time-phased planning elements for execution of the project through its lifespan into production. It is the schedule that ties together all of the disciplines in putting together a project–acquisition, systems engineering, cost estimating, and project performance management.

In attending scheduled-focused conferences over the years and in talking to program management colleagues is the refrain that:

a. It is hard to find a good scheduler, and

b. Constructing a schedule is more of an art than a science.

I can only say that this cedes the field to a small cadre of personnel who perform an essential function, but who do so with few objective tests of effectiveness or accountability–until it is too late.

But the reality is quite different from the fuzzy perception of schedule that is often assumed. All critical path method (CPM) schedules describe the same phenomena, though the lexicon will vary based on the specific proprietary application employed.

In government-focused and large commercial projects, the schedule is heart of planning and execution. In the DoD world it is known as the Integrated Master Schedule (IMS), which utilize the inherent bottom-up relationships of elements to determine the critical path. The main sources regarding the IMS have a great deal of overlap, but tend to be either aspirational (and unfortunately not prescriptive in defining the basic characteristics of an IMS) or reflect the “art over science” approach. For those following along these are the DoD Integrated Master Plan and Integrated Master Schedule Preparation and Use Guide of 21 October 2005, the NAVAIR Integrated Master Schedule (IMS) Guidebook of February 2010, and the NDIA Planning and Scheduling Excellence Guide (PASEG) of 9 March 2016 (unfortunately no current direct link).

The key elements that comprise an IMS, in addition to what we identified under the PMBOK are that it is networked schedule consisting of specific durations that are assigned to specific work tasks that must be accomplished in discrete work packages. In most cases these durations will be derived by some kind of either fixed, manual method or through the inherent optimization algorithm being applied by the CPM application. More on this below. But these work packages are discrete, meaning that they represent the full scope of the work that must be accomplished to during the specified duration for the creation of an end product. Discrete work is distinguished from level of effort (LOE) work, the latter being effort that is always expended, such as administrative and management tasks, that are not directly tied to the accomplishment of an end product.

These work packages are tied together to illustrate antecedent and progressive work that show predecessor and successor relationships. Long term planning activities, which cannot be fleshed out until more immediate work is completed are set aside as placeholders called planning packages. Each of the elements that are tracked in the IMS are based on the presentation of established criteria that define completion, events, and specific accomplishments.

The most comprehensive IMSs consist of detailed planning that include resources and elements of cost.

Detailed Elements of the IMS

Given these general elements, the best source of identifying the key elements of detailed schedules is also found in Department of Defense documents. The core document in this case is the Data Item Description for the IMS numbered as DI-MGMT-81650. The latest one is dated March 30, 2005. There are a minimum of 32 data elements, some of these already mentioned and which I will not repeat in this post since they are pretty well listed and identified in the source document.

For those not familiar with these documents, Data Item Descriptions (or DiDs–gotta love acronyms) represent the detailed technical documents for artifacts involved in the management of DoD-related operations. Thus, this provides us with a pretty good inventory of elements to source. But there are others that are implied.

For example, the 81650 DiD identifies an element known as “methodology.” What this means is that each scheduling application has an optimization engine where the true differences in schedule construction and intellectual property reside. Elements that affect these calculations are time-based, duration-based, float, and slack, and those related to resources.

These time-based elements consist of early start, early finish, late start, late finish. Duration-based elements consist of shortest time, longest time, greatest rank weight. An additional element related to schedule float identifies minimum slack. Resources are further delineated by the greatest work content and the greatest cumulative resource content.

I would note that the NDIA PASEG adds some sub-elements to this list that are based on the algorithmic result of the schedule engines and, thus, tends to ignore the antecedent salient elements of validating the optimization engine found above. These additional sub-elements are total float, free float, soft constraints, hard constraints, and–also found in the aforementioned DiD–program, task, and resource calendars.

Normally, this is where a survey would end–with schedule-specific data elements focused on the details of the schedule. But we’re going to challenge our assumptions a bit more.

Framing Assumptions of Schedules and Programs

The essential document that provides a definition of the term “framing assumption” was published by RAND Corporation in 2014 entitled Identifying Acquisition Framing Assumptions Through Structured Deliberation by Mark V. Arena and Lauren A. Mayer.  The definition of a framing assumption is “any explicit or implicit assumption that is central is shaping cost, schedule, or performance expectations.”

As I have explored in my prior post, the use of the term “cost” is a fuzzy one. To some it means earned value management, which measures a small part of the costs of development and ownership of a system. To others it means total cost of ownership. Schedule is an implicit part of this definition, and then we have performance expectations, which I will deal with in a separate post.

But we can apply the concept of framing assumptions in two ways.

The first applies to the assumed purpose of the schedule. What do we construct one? This goes back to my earlier statement that “…the schedule…ties together all of the disciplines in putting together a project–acquisition, systems engineering, cost estimating, and project performance management.”

For the NDIA PASEG the IMS is a “tool, not just a report” that “provides an ever-changing window into the progress (or lack of it) of current work effort. The strategic mission of the schedule is to point out future risks and opportunities.”

For the NAVAIR IMS Guide the IMS “At a top level…contain(ing) the networked, detailed tasks necessary to ensure successful program execution…” that “capture(s) project tasks and task relationships”, “show(s) the magnitude and how long each task will take”, “show(s) resources, durations, and constraints for each task” and “show(s) the critical path.”

For the DiD 81650 “The Integrated Master Schedule (IMS) is an integrated schedule containing the networked, detailed tasks necessary to ensure successful program execution.”

But the most comprehensive definition that goes to the core of the purpose of an IMS can be found in paragraph 1.2 of the DoD Integrated Master Plan and Integrated Master Schedule Preparation and Use Guide (IMP/IMS Guide). The elements of this purpose is worth transcribing, because if we have a requirement and cannot ask the “So What?” question, that is, if we cannot effectively determine why something must be done, then it probably does not need to be done (or we need to apply rigor in the development our expertise).

For what the IMP/IMS Guide does is clearly tie the schedule to the programmatic framing assumptions (used in the context in which RAND meant it) from initial acquisition through planning. Thus, the Integrated Master Plan (IMP) is firmly established as an antecedent and intermediate planning process (not merely an artifact or tool), that results in the program R&D execution process.

Taken in whole these processes and the resulting artifacts of the processes provide:

a. Provides offerors and acquiring activities with detailed execution planning, organization, and scheduling information that sets realistic expectations for the resulting contract action.

b. Serves as the execution plan for how the supplier will meet the contract’s performance requirements within cost and schedule constraints.

c. Provides a basis for integrating all of the functions involved in development and deployment of the system being acquired and, after award, sets the framing assumptions of the program.

d. Provides the basis for determining and assessing progress, identifying risks, determining the basis for contractual award fees and penalties, assess progress on Key Performance Parameters (KPPs) and Technical Performance Measures (TPMs), determine alternative paths to project completion, and determine opportunities for innovation and new acquisitions not apparent at the time of the award.

What all of this means is that the Integrated Master Schedule is too important to be left to the master scheduler. Yes, the schedule is a “tool” to those at the most basic tactical level in work execution. Yes, it is also an artifact and record.

But, more importantly, it is the comprehensive notional representation of the project’s or program’s scope, effort, progress, and assessment.

Private and Government-focused Industry Practice

A word has to mentioned here about the difference in practice between purely private industry practice in managing large projects and programs, and the skewing in the posts that focus on those industries that focus on public sector acquisition.

In the listing of schedule elements listed earlier there is reference to resources and elements of cost, yet here is an area that standard practice diverges. In private industry the application of resource assignments to specific work is standard practice and found in the IMS.

In companies focused on the public sector and DoD, the practice is to establish a different set of data outside of the schedule to manage resources. Needless to say this creates problems of validation of data across disparate systems related to the lowest level of planning and execution of a project or program. The basis for it, I think, relates to viewing the schedule as a “tool” and not the basis for project execution. This “tool” mindset also allows for separate “earned value engines” that oftentimes do not synchronize with the execution of the schedule, not only undermining the practical value of both, but also creating systems complexity and inefficiency where none need exist.

Another gap found in many areas of public acquisition concerns the development of an integrated master plan antecedent to the integrated master schedule. The cause here, once again, I believe is viewing the discipline of systems engineering separate; one that is somehow walled off from the continuing assessment of program execution, though that assumption is not supported by program phasing and milestone planning and achievement.

From the perspective of Integrated Program/Project Management, these considerations cannot be ignored, and so our inventory of essential data elements must include elements from these practices.

But Wait! There’s More!

Most discussions at conferences and professional meetings will usually stop at this point–viewing cost and schedule integration as the essence of IPM–with “cost’ limited to EVM. Some will add some “oh by the ways” such as technical performance and risk. I will address these in the next post as well.

But there are also other systems and processes that are relevant to our inventory. But what I have covered thus far in this series should challenge you if you have been paying attention.

I tackled cost first because of the assumptions implicit in equating it with EVM, and then went on to demonstrate that there are other elements of cost that provide a more comprehensive view. This is not denigrate the value of EVM, since it is an essential process in project management, but to demonstrate that its analytics are not comprehensive and, as with any complex system, require the contribution of additional information, depending on the level and type of work performance and progress being recorded and assessed.

In this post I have tacked the IMS, and have demonstrated that it is not supplementary process, but central to all other processes and actions being taken in the execution of the project or program. Many times people enter the schedule from an assessment of cost performance–tracing cost drivers to specific schedule activities and then tasks. But this has it backwards, based on the best technology available sometime in the late 1990s.

It is the schedule that brings together all relevant information from our execution and control processes and systems. It seems to me that perhaps the first place one goes is the schedule, that the first element to trace are those related to schedule slippage and unexpected resource consumption, and then to trace these to contract cost impact.

But, of course, there is more–and these other elements may turn out to be of greater consequence than just cost and schedule considerations. More on these in my next post.

In Closing: Battle Rhythm and the Plans of the Day and Week

When I was on active duty in the Navy we planned our days and weeks around a Plan of the Day or Plan of the Week. This is a posted agenda so that the entire ship or command understands the major events that affect its operations. It establishes focus on the main events at hand and fosters communication both laterally and vertically within the chain of command.

As one rises in rank and responsibility it is important to understand the operational tempo of the unit or ship, its systems, and subsystems. This is important in avoiding crisis management.This is known as Battle Rhythm.

Baked into the schedule (assuming proper construction and effective integrated product teaming) are the major events, milestones, and expected achievement of the program or project. Thus, there are events that should be planned around and anticipation of these items on a daily, weekly, biweekly, monthly, quarterly, and major milestone basis.

Given an effective battle rhythm, a PM should never complain about performance and progress indicators “looking into the rear view mirror”. If that is the case then perhaps the PM should look at the effectiveness and timeliness of the underlying project and program systems.Thus, when a PMO complains of information and intelligence being too late to be actionable, it is actually describing a condition of ineffective, latent, and disjointed information and intelligence systems.

Thus, our next step in our next post is to identify more salient IPM elements that cut to the heart of the matter.

Take Me to the River, Part 1, Cost Elements – A Digital Inventory of Integrated Program Management Elements

In a previous post I recommended a venue focused on program managers to define what constitutes integrated program management. Since that time I have been engaged with thought leaders and influencers in both government and industry, many of whom came to a similar conclusion independently, agree in this proposition and who are working to bring it about.

My own interest in this discussion is from the perspective of maximization of the information ecosystem that underlies and describes the systems known as projects and programs. But what do I mean by this? This is more than a gratuitous question, because oftentimes the information essential to defining project and program performance and behavior are intermixed, and therefore diluted and obfuscated, by confusion with those of the overall enterprise.

Project vs. Program

What a mean by the term project in this context is an organization that is established around a defined effort of fixed duration (a defined beginning and projected end) that is specifically planned and organized for the development and deployment of a particular end item, state, or result, with an identified set of resources assigned and allocated to achieve its goals.

A program is defined as a set of interrelated projects and sub-projects which is also of fixed duration that is specifically planned and organized not only for the development and deployment, but also the continues this role through sustainment (including configuration control), of a particular end item, state, or result, with an identified set of resources assigned and allocated to achieve its goals. As such, the program management team also is the first level life-cycle manager of the end item, state, or result, and participates with other levels of the organization in these activities. (More on life-cycle costs below).

Note the difference in scope and perspective, though oftentimes we use these terms interchangeably.

For shorthand, a small project of short duration operates at the tactical level of planning. A larger project, which because of size, complexity, duration, and risk approaches the definition of a program, operates at the operational level, as do most programs. Larger and more complex programs that will affect the core framing assumptions of the enterprise align their goals to the strategic level of planning. Thus, there are differences in scale, complexity and, hence, data points that can be captured at these various levels.

Another aspect of the question of establishing an integrated digital project and program management environment is sufficiency of data, which relates directly to scale. Sufficiency in this regard is defined as whether there is enough data to establish a valid correlation and, hopefully, draw a causation. Micro-economic foundations–and models–often fail because of insufficient data. This is important to keep in mind as we inventory the type of data available to us and its significance. Oftentimes additional data points can make up for those cases where there is insufficiency in the depth and quality of a more limited set of data points. Doing so will also mitigate subjectivity, especially in smaller efforts.

Thus, in constructing a project or program, regardless of its level of planning, we often begin by monitoring the most basic elements. These are usually described as cost, schedule, performance, and risk, though I will discuss and identify other contributors that can be indexed.

This first post will concentrate on the first set of elements–those that constitute cost. In looking at these, however, we will find that the elements within this category are a bit broader than what is currently used in determining project and program performance.

Contract Costs

When we refer to costs in project and program management we oftentimes are referring to those direct and indirect costs expended by the supplier over the course of the effort, particular in Cost Plus contractual efforts. The breakout of cost from a data perspective places it in subcategories:

Note that these are costs within the contract itself, as a cohesive, self-identifying entity. But there are other costs associated with our contracts which feed into program and project management. These are necessary to identify and capture if we are to take an holistic approach to these disciplines.

The costs that are anticipated by the contract are based on cost estimates, which need to be funded. These funded costs will be allocated to particular lines in the contract (CLINs), whether these be supporting contract efforts or deliverables. Thus, additional elements of our digital inventory include these items but lead us to our next categories.

Cost Estimates, Colors of Money, and Cash Flow

Cost estimates are the basis for determining the entire contract effort, and eventually make it into the project and program cost plan. Once cost estimates are applied and progress is tracked through the collection of actual costs, these elements are further traced to project and program activities, products, commodities, and other business categories, such as the indirect costs identified on the right hand side of the chart above.

Our cost plans need to be financed, as with any business entity. Though the most complex projects often are financed by some government entity because of their scale and impact, private industry–even among the largest companies–must obtain financing for the efforts at hand, whether these come from internal or external sources.

Thus two more elements present themselves: “colors” of money, that is, money that is provided for a specific purpose within the project and program cost plan which could also be made available for only some limited period of time, and the availability of that money sufficient to execute particular portions of the project or program, that is, cash flow.

The phase of the project or program will determine the type of money that is made available. These are also contained in the costs that are identified in the next section, but include, from a government financing perspective, Research, Development, Test and Evaluation (RDT&E) money, Procurement, Operations and Maintenance (O&M), and Military Construction (MILCON) dollars. By Congressional appropriation and authorization, each of these types of money may be provided for particular programs, and each type of authorization has a specific period in which they can be committed, obligated, and expended before they expire. The type of money provided also aligns with the phase of the project or program: whether it still be in development, production, deployment and acquisition, sustainment, or retirement.

These costs will be reflected in reporting that reflects actual and projected rates of expenditure, that will be tied to procurement, material management, and resource management systems.

Additional Relative Costs

As with all efforts, the supplier is not the only entity to incur costs on a development project or program. The customer also incurs costs, which must be taken into account in determining the total cost of the effort.

For anyone who has undergone any kind of major effort on their home, or even had to get things other workaday things done, like deciding when to change the tires on the car or when to get to the dentist implicitly understand that there is more effort in timing and determining the completion of these items than the cost of new kitchen cabinets, tires, or a filling. One must decide to take time off from work. One must look to their own cash flow to see if they have sufficient funds not only for the merchant, but for all of the sundry and associated tasks that must be done in preparation for and after the task’s completion. To choose to do one thing is to choose not to do another–an opportunity cost. Other people may be involved in the decision. Perhaps children are in the household and a babysitter is required. Perhaps the home life is so disrupted that another temporary abode is necessary on a short term basis.

All of these are costs that one must take into account, and at the individual level we do these calculations and plan these activities as a matter of fact.

In customer-supplier relationships the former incurs costs above the contract costs, which must be taken into account by the customer project or program executive. In the Department of Defense an associated element is called program management administration (PMA). For private entities this falls into allocated G&A and Overhead costs, aside from direct labor and material costs, but in all cases these are costs that have come about due to the decision to undertake the specific effort.

Other elements of cost on the customer side are contractually furnished facilities, property, material or equipment, and testing and evaluation costs.

Contract Cost Performance: Earned Value Management

I will further discuss EVM in more detail a later installment of this element inventory, but mention must be made of EVM since to exclude it is to be grossly remiss.

At core EVM is a financial measure of value against what has been physically achieved against a performance management baseline (PMB), which ties actual costs and completion of work through a work breakdown structure (WBS). It is focused on the contract level of performance, which in some cases may constitute the entire project, though not necessarily the entire effort for the program.

Linkages to the other cost elements I have delineated elsewhere in this post ranges from strong to non-existent. Thus, while an essential means of linking contractual achievement to work accomplishment that, at various levels of fidelity, is linked to actual technical achievement, it does not capture all of the costs in our data inventory.

An essential overview in understanding what it does capture is best summed up in the following diagram taken from the Defense Acquisition University (DAU) site:

Commercial EVM elements, while not necessarily using the same terminology or highly structured process, possess a similar structure in allocating costs and achievement against baseline costs in developmental efforts to work packages (oftentimes schedule tasks in resource-loaded schedules) under an integrated WBS structure with Management Reserve not included as part of the baseline.

Also note that commercial efforts often include their internal costs as part of the overall contractual effort in assessing earned value against actual work achievement, while government contracting efforts tend to exclude these inherent costs. That being said, it is not that there is no cost control in these elements, since strict ceilings often apply to PMA and other such costs, it is that contract cost performance does not take these costs, among others, into account.

Furthermore, the chart above provides us with additional sub-elements in our inventory that are essential in capturing data at the appropriate level of our project and program hierarchy.

Thus, for IPM, EVM is one of many elements that are part our digital inventory–and one that provides a linkage to other non-cost elements (WBS). But in no way should it be viewed as capturing all essential costs associated with a contractual effort, aside from the more expansive project or program effort.

Portfolio Management and Life-Cycle Costs

There is another level of management that is essential in thinking about project and program management, and that is the program executive level. In the U.S. military services these are called Program Executive Officers (PEOs). In private industry they are often product managers, CIOs, and other positions that often represent the link between the program management teams and the business operations side of the organization. Thus, this is also the level of management organized to oversee a number of individual projects and programs that are interrelated based on mission, commodity, or purpose. As such, this level of management often concentrates on issues across the portfolio of projects and programs.

The main purpose of the portfolio management level is to ensure that project and program efforts are aligned with the strategic goals of the organization, which includes an understanding of the total cost of ownership.

In performing this purpose one of the functions of portfolio management is to identify risks that may manifest within projects and programs, and to determine the most productive use of limited resources across them, since they are essentially competing for the same dollars. This includes cost estimates and re-allocations to address ontological, aleatory, and epistemic risk.

Furthermore, the portfolio level is also concerned with the life-cycle factors of the item under development, so that there is effective hand-off at the production and sustainment phases. The key here is to ensure that each project or program, which is focused on the more immediate goals of project and program execution, continues to meet the goals of the organization in terms of life-cycle costs, and its effectiveness in meeting the established goals essential to the project or program’s framing assumptions.

But here we are focusing on cost, and so the costs involved are trade-off costs and opportunities, assessments of return on investment, and the aforementioned total cost of ownership of the end item or system. The costs that contribute to the total cost of ownership include all of the development costs, external and internal program management costs, procurement costs, operations and support costs, maintenance and life extension costs, and system retirement costs.

Conclusion

I believe that the survey of cost elements presented in this initial post illustrates that present digital project and program management systems are limited and immature–capturing and evaluating only a small portion of the total amount of available data.

These gaps make it impossible, for example, to determine the relative significance any one element–and the analytics that can derived from it–over another; not to mention the inability to provide the linkage among these absent elements that would garner insights into cause-and-effect and predictive behavior so that we have enough time to influence the outcome.

It is also clear that, when we strive to define what constitutes integrated project and program management, that we must learn what is of most importance to the PM in performing those duties that are viewed as essential to success, and which are not yet captured in our analytical and predictive systems.

Only when our systems reach the level of cohesiveness and comprehensiveness in providing organizational insight and intelligence essential to project or program management will PMs ignore them at their own risk. In getting there we must first identify what can be captured from the activities that contribute to our efforts.

My next post will identify essential elements related to planning and scheduling.

 

Note: I am indebted to Defense Acquisition University’s resources in my research across many of my postings and link to them for the edification of the reader. For more insight into many of the points raised in this post I would recommend that readers familiarize themselves with A Guide for DoD Program Managers.

 

Don’t Stop Thinking About Tomorrow–Post-Workshop Blogging…and some Low Comedy

It’s been a while since I posted to my blog due to meetings and–well–day job, but some interesting things occurred during the latest Integrated Program Management (IPMD) of the National Defense Industrial Association (NDIA) meeting that I think are of interest. (You have to love acronyms to be part of this community).

Program Management and Integrated Program Management

First off is the initiative by the Program Management Working Group to gain greater participation by program managers with an eye to more clearly define what constitutes integrated program management. As readers of this blog know, this is a topic that I’ve recently written about.

The Systems Engineering discipline is holding their 21st Annual Systems Engineering Conference in Tampa this year from October 22nd to the 25th. IPMD will collaborate and will be giving a track dedicated to program management. The organizations have issued a call for papers and topics of interest. (Full disclosure: I volunteered this past week to participate as a member of the PM Working Group).

My interest in this topic is based on my belief from my years of wide-ranging experience in duties from having served as a warranted government contracting officer, program manager, business manager, CIO, staff officer, and logistics officer that there is much more to the equation in defining IPM that transcends doing so through the prism of any particular discipline. Furthermore, doing so will require collaboration and cooperation among a number of project management disciplines.

This is a big topic where, I believe, no one group or individual has all of the answers. I’m excited to see where this work goes.

Integrated Digital Environment

Another area of interest that I’ve written about in the past involved two different–but related–initiatives on the part of the Department of Defense to collect information from their suppliers that is necessary in their oversight role not only to ensure accountability of public expenditures, but also to assist in project cost and schedule control, risk management, and assist in cost estimation, particularly as it relates to risk sharing cost-type R&D contracted project efforts.

Two major staffs in the Offices of the Undersecretary of Defense have decided to go with a JSON-type schema for, on the one hand, cost estimating data, and on the other, integrated cost performance, schedule, and risk data. Each initiative seeks to replace the existing schemas in place.

Both have been wrapped around the axle on getting industry to move from form-based reporting and data sharing to a data-agnostic solution that meet the goals of reducing redundancy in data transmission, reducing the number of submissions and data streams, and moving toward one version of truth that allows for SMEs on both sides of the table to concentrate on data analysis and interpretation in jointly working toward the goal of successful project completion and end-item deployment.

As with the first item, I am not a disinterested individual in this topic. Back when I wore a uniform I helped to construct DoD policy to create an integrated digital environment. I’ve written about this experience previously in this blog, so I won’t bore with details, but the need for data sharing on cost-type efforts acknowledges the reality of the linkage between our defense economic and industrial base and the art of the possible in deploying defense-related end items. The same relationship exists for civilian federal agencies with the non-defense portion of the U.S. economy. Needless to say, a good many commercial firms unrelated to defense are going the same way.

The issue here is two-fold, I think, from speaking with individuals working these issues.

The first is, I think, that too much deference is being given to solution providers and some industry stakeholders, influenced by those providers, in “working the refs” through the data. The effect of doing so not only slows down the train and protects entrenched interests, it also gets in the way of innovation, allowing the slowest among the group to hold up the train in favor of–to put it bluntly–learning their jobs on the job at the expense of efficiency and effectiveness. As I expressed in a side conversion with an industry leader, all too often companies–who, after all, are the customer–have allowed themselves to view the possible by the limitations and inflexibility of their solution providers. At some point that dysfunctional relationship must end–and in the case of comments clearly identified as working the refs–they should be ignored. Put your stake in the ground and let innovation and market competition sort it out.

Secondly, cost estimating, which is closely tied to accounting and financial management, is new and considered tangential to other, more mature, performance management systems. My own firm is involved in producing a solution in support of this process, collecting data related to these reports (known collectively in DoD as the 1921 reports), and even after working to place that data in a common data lake, exploring with organizations what it tells us, since we are only now learning what it tells us. This is classical KDD–Knowledge Discovery in Data–and a worthwhile exercise.

I’ve also advocated going one step further in favor of the collection of financial performance data (known as the Contract Funds Status Report), which is an essential reporting requirement, but am frustrated to find no one willing to take ownership of the guidance regarding data collection. The tragedy here is that cost performance, known broadly as Earned Value Management, is a technique related to the value of work performance against other financial and project planning measures (a baseline and actuals). But in a business (or any enterprise), the fuel that drives the engine are finance-related, and two essential measures are margin and cash-flow. The CFSR is a report of program cash-flow and financial execution. It is an early measure of whether a program will execute its work in any given time-frame, and provides a reality check on the statistical measures of performance against baseline. It is also a necessary logic check for comptrollers and other budget decision-makers.

Thus, as it relates to data, there has been some push-back against a settled schema, where the government accepts flat files and converts the data to the appropriate format. I see this as an acceptable transient solution, but not an ultimate one. It is essential to collect both cost estimating and contract funds status information to perform any number of operations that relate to “actionable” intelligence: having the right executable money at the right time, a reality check against statistical and predictive measures, value analysis, and measures of ROI in development, just to name a few.

I look forward to continuing this conversation.

To Be or Not to Be Agile

The Section 809 Panel, which is the latest iteration of acquisition reform panels, has recommended that performance management using earned value not be mandated for efforts using Agile. It goes on, however, to assert that program executive “should approve appropriate project monitoring and control methods, which may include EVM, that provide faith in the quality of data and, at a minimum, track schedule, cost, and estimate at completion.”

Okay…the panel is then mute on what those monitoring and control measure will be. Significantly, if only subtly, the #NoEstimates crowd took a hit since the panel recommends and specifies data quality, schedule, cost and EAC. Sounds a lot like a form of EVM to me.

I must admit to be a skeptic when it comes to swallowing the Agile doctrine whole. Its micro-economic foundations are weak and much of it sounds like ideology–bad ideology at best and disproved ideology at worst (specifically related to the woo-woo about self-organization…think of the last speculative bubble and resulting financial crisis and depression along these lines).

When it comes to named methodologies I am somewhat from Missouri. I apply (and have in previous efforts in the Dark Ages back when I wore a uniform) applied Kanban, teaming, adaptive development (enhanced greatly today by using modern low-code technology), and short sprints that result in releasable modules. But keep in mind that these things were out there long before they were grouped under a common heading.

Perhaps Agile is now a convenient catch-all for best practices. But if that is the case then software development projects using this redefined version of Agile deserve no special dispensation. But I was schooled a bit by an Agile program manager during a side conversation and am always open to understanding things better and revising my perspectives. It’s just that there was never a Waterfall/Agile dichotomy just as there never really was a Spiral/Waterfall dichotomy. These were simply convenient development models to describe a process that were geared to the technology of the moment.

There are very good people on the job exploring these issues on the Agile Working Group in the IPMD and I look forward to seeing what they continue to come up with.

Rip Van Winkle Speaks!

The only disappointing presentation occurred on the second and last day of the meeting. It seemed we were treated by a voice from somewhere around the year 2003 that, in what can only be described as performance art involving free association, talked about wandering the desert, achieving certification for a piece of software (which virtually all of the software providers in the room have successfully navigated at one time or another), discovering that cost and schedule performance data can be integrated (ignoring the work of the last ten years on the part of, well, a good many people in the room), that there was this process known as the Integrated Baseline Review (which, again, a good many people in the room had collaborated on to both define and make workable), and–lo and behold–the software industry uses schemas and APIs to capture data (known in Software Development 101 as ETL). He then topped off his meander by an unethical excursion into product endorsement, selected through an opaque process.

For this last, the speaker was either unaware or didn’t care (usually called tone-deafness) that the event’s expenses were sponsored by a software solution provider (not mine). But it is also as if the individual speaking was completely unaware of the work behind the various many topics that I’ve listed above this subsection, ignoring and undermining the hard work of the other stakeholders that make up our community.

On the whole an entertaining bit of poppycock, which leads me to…

A Word about the Role of Professional Organizations (Somewhat Inside Baseball)

In this blog, and in my interactions with other professionals at–well–professional conferences–I check my self-interest in at the door and publicly take a non-commercial stance. It is a position that is expected and, I think, appreciated. For those who follow me on social networking like LinkedIn, posts from my WordPress blog originate from a separate source from the commercial announcements that are linked to my page that originate from my company.

If there are exhibitor areas, as some conferences and workshops do have, that is one thing. That’s where we compete and play; and in private side conversations customers and strategic partners will sometimes use the opportunity as a convenience to discuss future plans and specific issues that are clearly business-related. But these are the exceptions to the general rule, and there are a couple of reasons for this, especially at this venue.

One is because, given that while it is a large market, it is a small community, and virtually everyone at the regular meetings and conferences I attend already know that I am the CEO and owner of a small software company. But the IPMD is neutral ground. It is a place where government and industry stakeholders, who in other roles and circumstances are in a contractual or competing relationship, come to work out the best way of hashing out processes and procedures that will hopefully improve the discipline of program and project management. It is also a place of discovery, where policies, new ideas, and technologies can be vetted in an environment of collaboration.

Another reason for taking a neutral stance is simply because it is both the most ethical and productive one. Twenty years ago–and even in some of the intervening years–self-serving behavior was acceptable at the IPMD meetings where both leadership and membership used the venue as a basis for advancing personal agendas or those of their friends, often involving backbiting and character assassination. Some of those people, few in number, still attend these meetings.

I am not unfamiliar with the last–having been a target at one point by a couple of them but, at the end of the day, such assertions turned out to be without merit, undermining the credibility of the individuals involved, rightfully calling into question the quality of their character. Such actions cannot help but undermine the credibility and pollute the atmosphere of the organization in which they associate, as well.

Finally, the companies and organizations that sponsor these meetings–which are not cheap to organize, which I know from having done so in the past–deserve to have the benefit of acknowledgment. It’s just good manners to play nice when someone else is footing the bill–you gotta dance with those that brung you. I know my competitors and respect them (with perhaps one or two exceptions). We even occasionally socialize with each other and continue long-term friendships and friendly associations. Burning bridges is just not my thing.

On the whole, however, the NDIA IPMD meetings–and this one, in particular–was a productive and positive one, focused on the future and in professional development. That’s where, I think, that as a community we need to be and need to stay. I always learn something new and get my dose of reality from a broad-based perspective. In getting here the leadership of the organization (and the vast majority of the membership) is to be commended, as well as the recent past and current members of the Department of Defense, especially since the formation of the Performance Assessments and Root Cause Analysis (PARCA) office.

In closing, there were other items of note discussed, along with what can only be described as the best pair of keynote addresses that I’ve heard in one meeting. I’ll have more to say about some of the concepts and ideas that were presented there in future posts.

Post-Workshop Talking Blues — No Bucks, No Buck Rogers: Cashflow Analysis in Projects (Somewhat Wonkish)

When I used this analogy the week before last during the last Integrated Project Management Workshop in the D.C. area I was accused of dating myself–and perhaps it is true. For those wondering the quote was popularized by the 1983 movie The Right Stuff, which was based on the 1979 book written by Tom Wolfe of the same title. The book and movie was about the beginnings of the U.S. space program culminating in the creation of NASA and the Project Mercury program.

A clip from the movie follows:

It goes without saying that while I was familiar as a boy with Project Mercury and followed the seven astronauts as did the rest of the country, transfixed on the prospect of space exploration during the days of the New Frontier, Buck Rogers was from the childhood of my father’s generation through, at first, its radio program, and then through the serials that were released to the movie theaters during the 1930s.

The point of the quote, of course, is that Project Mercury’s success was based on its ability to obtain funding and, no doubt, the Mercury 7 astronauts so inspired the imagination of the nation that even the most parsimonious Member of Congress could not help but provide it with sufficient funding for success. That this was also the era of the “space race” with the Soviet Union, which also helped to spur funding.

The lesson of “No Bucks, No Buck Rogers” also applies to project management, but not just in the use of imagery and marketing to gain funding. Instead, the principle applies through a more mundane part of the discipline: financial management and the relationship between cash flow and project performance.

What I am referring to as cash flow is not the burn rate of expenditures against an end point, but the intersection of sufficient money at the right time programmed in accordance with the project plan (in alignment with both the IMS and PMB), and informed by project performance.

To those unfamiliar with this method it sounds similar to earned value management, but it is not. EVM informs our decision, but the analysis is not the same.

First, in using this analysis the cumulative actual cost of work performed (ACWP in earned value) should be compared to accrued expenditures for the project. These figures will not be exact, but will provide an indication whether accruals to date have been in line with what was forecasted. In government contracting and project management, these figures will also be somewhat off because earned value figures do not include fee or profit, while financial management figures will include fee or profit. Understanding the profit center from which the financial expenditures are being accrued will allow for a reconciliation of these differences.

Secondly, if projected accruals against the project plan begin to deviate, it is an early indication of programmatic risk being manifested in the physical expenditures of the project. For example, if management anticipates that there will be a delay in project execution in some area, they may decide to defer acquisition of spare parts used in the construction of a component, or they may delay the award of a subcontract that was meant to augment staff in an area requiring specialized expertise.

Third, and conversely, deviations of expenditures for needed materials or manpower may adversely affect project execution, and provide an early warning that such shortages or misalignments will move project accomplishment to the right. For example, a company may have underestimated the combined Procurement Action Lead Time (PALT) and delivery of critical materials, which will now arrive much later than anticipated. This misalignment will cascade through the schedule and future planned work.

For both of these previous conditions, the proper determination of cause-and-effect is essential, since either may appear to suggest the opposite cause.

Fourth, variances in performance either in earned value achievement or schedule performance may require an adjustment to the type of money being provided. For example, when a project fails to execute and risk is manifested in terms of cost and/or schedule, financial management and budgeting personnel, always under pressure to apply excess funds to more immediate needs, may mistakenly believe that a budget mark (a decrease) is appropriate since the allocated money will not be executed in the current time-frame.

But this is not necessarily the case. Performance management data tracks the performance measurement baseline (PMB) for the life of the project, but funding has a finite period in which it can be executed. In government contracting it is not uncommon for there to be different “colors” of money: Research, Development, Test & Evaluation (RDT&E), Procurement, Operations and Maintenance (O&M), and others. Furthermore, these types of appropriations have different expiration dates: two years in terms of RDT&E, three years for procurement, and one year for O&M. The financial management plan takes into account the life of money allocated to the project, as well as the costs of activities necessary to project execution. The time frame for financial execution is shorter and, therefore, more sensitive to risks or variances than project plans that are projected across a longer period of time.

For an R&D program experiencing risk during a particular portion of its PMB, for example, a variance this year may require not only a steady funding profile, but a larger expenditure to handle risk. Marking two-year RDT&E money in its first year in this case would be a mistake, of course, but *not* properly anticipating the proper level of risk adjusted expenditures to handle risk may exacerbate the ability of the project to recover and execute, causing it to fall into a spiral of compounding misalignments and variances from which it may never recover.

Thus, what we can see is that, oftentimes, the availability of cash–and the right kind of cash at the right time–will have as much impact on project execution as the factors of technical and engineering risk. Furthermore, tracking and reconciling the financial plan against actual accomplishment will provide a very detailed early indicator into project performance since it is sensitive to deviations in the fiscal plan.

Postscript.

For those not savvy about the cultural reference to Buck Rogers what follows is a sampling of the first of what became a movie serial in the 1930s, which originated as a radio “space opera”. Later it became a TV series in 1950 as well. For the record, I was not around yet when these were popular, though I did watch the reruns on Saturday mornings in the 1960s and early 1970s.

 

 

 

 

 

 

 

 

 

 

Ground Control from Major Tom — Breaking Radio Silence: New Perspectives on Project Management

Since I began this blog I have used it as a means of testing out and sharing ideas about project management, information systems, as well to cover occasional thoughts about music, the arts, and the meaning of wisdom.

My latest hiatus from writing was due to the fact that I was otherwise engaged in a different sort of writing–tech writing–and in exploring some mathematical explorations related to my chosen vocation, aside from running a business and–you know–living life.  There are only so many hours in the day.  Furthermore, when one writes over time about any one topic it seems that one tends to repeat oneself.  I needed to break that cycle so that I could concentrate on bringing something new to the table.  After all, it is not as if this blog attracts a massive audience–and purposely so.  The topics on which I write are highly specialized and the members of the community that tend to follow this blog and send comments tend to be specialized as well.  I air out thoughts here that are sometimes only vaguely conceived so that they can be further refined.

Now that that is out of the way, radio silence is ending until, well, the next contemplation or massive workload that turns into radio silence.

Over the past couple of months I’ve done quite a bit of traveling, and so have some new perspectives that and trends that I noted and would like to share, and which will be the basis (in all likelihood) of future, more in depth posts.  But here is a list that I have compiled:

a.  The time of niche analytical “tools” as acceptable solutions among forward-leaning businesses and enterprises is quickly drawing to a close.  Instead, more comprehensive solutions that integrate data across domains are taking the market and disrupting even large players that have not adapted to this new reality.  The economics are too strong to stay with the status quo.  In the past the barrier to integration of more diverse and larger sets of data was the high cost of traditional BI with its armies of data engineers and analysts providing marginal value that did not always square with the cost.  Now virtually any data can be accessed and visualized.  The best solutions, providing pre-built domain knowledge for targeted verticals, are the best and will lead and win the day.

b.  Along these same lines, apps and services designed around the bureaucratic end-of-month chart submission process are running into the new paradigm among project management leaders that this cycle is inadequate, inefficient, and ineffective.  The incentives are changing to reward actual project management in lieu of project administration.  The core fallacy of apps that provide standard charts based solely on user’s perceptions of looking at data is that they assume that the PM domain knows what it needs to see.  The new paradigm is instead to provide a range of options based on the knowledge that can be derived from data.  Thus, while the options in the new solutions provide the standard charts and reports that have always informed management, KDD (knowledge discovery in database) principles are opening up new perspectives in understanding project dynamics and behavior.

c.  Earned value is *not* the nexus of Integrated Project Management (IPM).  I’m sure many of my colleagues in the community will find this statement to be provocative, only because it is what they are thinking but have been hesitant to voice.  A big part of their hesitation is that the methodology is always under attack by those who wish to avoid accountability for program performance.  Thus, let me make a point about Earned Value Management (EVM) for clarity–it is an essential methodology in assessing project performance and the probability of meeting the constraints of the project budget.  It also contributes data essential to project predictive analytics.  What the data shows from a series of DoD studies (currently sadly unpublished), however, is that it is planning (via a Integrated Master Plan) and scheduling (via an Integrated Master Schedule) that first ties together the essential elements of the project, and will record the baking in of risk within the project.  Risk manifested in poorly tying contract requirements, technical performance measures, and milestones to the plan, and then manifested in poor execution will first be recorded in schedule (time-based) performance.  This is especially true for firms that apply resource-loading in their schedules.  By the time this risk translates and is recorded in EVM metrics, the project management team is performing risk handling and mitigation to blunt the impact on the performance management baseline (the money).  So this still raises the question: what is IPM?  I have a few ideas and will share those in other posts.

d.  Along these lines, there is a need for a Schedule (IMS) Gold Card that provides the essential basis of measurement of programmatic risk during project execution.  I am currently constructing one with collaboration and will put out a few ideas.

e.  Finally, there is still room for a lot of improvement in project management.  For all of the gurus, methodologies, consultants, body shops, and tools that are out there, according to PMI, more than a third of projects fail to meet project goals, almost half to meet budget expectations, less than half finished on time, and almost half experienced scope creep, which, I suspect, probably caused “failure” to be redefined and under-reported in their figures.  The assessment for IT projects is also consistent with this report, with CIO.com reporting that more than half of IT projects fail in terms of meeting performance, cost, and schedule goals.  From my own experience and those of my colleagues, the need to solve the standard 20-30% slippage in schedule and similar overrun in costs is an old refrain.  So too is the frustration that it need take 23 years to deploy a new aircraft.  A .5 CPI and SPI (to use EVM terminology) is not an indicator of success.  What this indicates, instead, is that there need to be some adjustments and improvements in how we do business.  The first would be to adjust incentives to encourage and reward the identification of risk in project performance.  The second is to deploy solutions that effectively access and provide information to the project team that enable them to address risk.  As with all of the points noted in this post, I have some other ideas in this area that I will share in future posts.

Onward and upward.

Post-Blogging NDIA Blues — The Latest News (Project Management Wonkish)

The National Defense Industrial Association’s Integrated Program Management Division (NDIA IPMD) just had its quarterly meeting here in sunny Orlando where we braved the depths of sub-60 degrees F temperatures to start out each day.

For those not in the know, these meetings are an essential coming together of policy makers, subject matter experts, and private industry practitioners regarding the practical and mundane state-of-the-practice in complex project management, particularly focused on the concerns of the the federal government and the Department of Defense.  The end result of these meetings is to publish white papers and recommendations regarding practice to support continuous process improvement and the practical application of project management practices–allowing for a cross-pollination of commercial and government lessons learned.  This is also the intersection where innovation among the large and small are given an equal vetting and an opportunity to introduce new concepts and solutions.  This is an idealized description, of course, and most of the petty personality conflicts, competition, and self-interest that plagues any group of individuals coming together under a common set of interests also plays out here.  But generally the days are long and the workshops generally produce good products that become the de facto standard of practice in the industry. Furthermore the control that keeps the more ruthless personalities in check is the fact that, while it is a large market, the complex project management community tends to be a relatively small one, which reinforces professionalism.

The “blues” in this case is not so much borne of frustration or disappointment but, instead, from the long and intense days that the sessions offer.  The biggest news from an IT project management and application perspective was twofold. The data stream used by the industry in sharing data in an open systems manner will be simplified.  The other was the announcement that the technology used to communicate will move from XML to JSON.

Human readable formatting to Data-focused formatting.  Under Kendall’s Better Buying Power 3.0 the goal of the Department of Defense (DoD) has been to incorporate better practices from private industry where they can be applied.  I don’t see initiatives for greater efficiency and reduction of duplication going away in the new Administration, regardless of what a new initiative is called.

In case this is news to you, the federal government buys a lot of materials and end items–billions of dollars worth.  Accountability must be put in place to ensure that the money is properly spent to acquire the things being purchased.  Where technology is pushed and where there are no commercial equivalents that can be bought off the shelf, as in the systems purchased by the Department of Defense, there are measures of progress and performance (given that the contract is under a specification) that are submitted to the oversight agency in DoD.  This is a lot of data and to be brutally frank the method and format of delivery has been somewhat chaotic, inefficient, and duplicative.  The Department moved to address this by a somewhat modest requirement of open systems submission of an application-neutral XML file under the standards established by the UN/CEFACT XML organization.  This was called the Integrated Program Management Report (IMPR).  This move garnered some improvement where it has been applied, but contracts are long-term, so incorporating improvements though new contractual requirements tends to take time.  Plus, there is always resistance to change.  The Department is moving to accelerate addressing these inefficiencies in their data streams by eliminating the unnecessary overhead associated with specifications of formatting data for paper forms and dealing with data as, well, data.  Great idea and bravo!  The rub here is that in making the change, the Department has proposed dropping XML as the technology used to transfer data and move to JSON.

XML to JSON. Before I spark another techie argument about the relative merits of each, there are some basics to understand here.  First, XML is a language, JSON is simply data exchange format.  This means that XML is specifically designed to deal with hierarchical and structured data that can be queried and where validation and fidelity checks within the data are inherent in the technology. Furthermore, XML is known to scale while maintaining the integrity of the data, which is intended for use in relational databases.  Furthermore, XML is hard to break.  It is meant for editing and will maintain its structure and integrity afterward.

The counter argument encountered is that JSON is new! and uses fewer characters! (which usually turns out to be inconsequential), and people are talking about it for Big Data and NoSQL! (but this happened after the fact and the reason for shoehorning it this way is discussed below).

So does it matter?  Yes and no.  As a supplier specializing in delivering solutions that normalize and rationalize data across proprietary file structures and leverage database capabilities, I don’t care.  I can adapt quickly and will have a proof-of-concept solution out within 30 days of receiving the schema.

The risk here, which applies to DoD and the industry, is that the decision to go to JSON is made only because it is the shiny new thing used by gamers and social networking developers.  There has also been a move to adapt to other uses because of the history of significant security risks that had been found in Java, so much so that an entire Wikipedia page is devoted to them.  Oracle just killed off Java applets, though Java hangs on.  JSON, of course, isn’t Java, but it was designed from birth as JavaScript Object Notation (hence the acronym JSON), with the purpose of handling relatively small bits of data across web servers in a number of proprietary settings.

To address JSON deficiencies relative to XML, a number of tools have been and are being developed to replicate the fidelity and reliability found in XML.  Whether this is sufficient to be effective against a structured LANGUAGE is to be seen.  Much of the overhead that technies complain about in XML is due to the native functionality related to the power it brings to the table.  No doubt, a bicycle is simpler than a Formula One racer–and this is an apt comparison.  Claiming “simpler” doesn’t pass the “So What?” test knowing the business processes involved.  The technology needs to be fit to the solution.  The purpose of data transmission using APIs is not only to make it easy to produce but for it to–you know–achieve the goals of normalization and rationalization so that it can be used on the receiving end which is where the consumer (which we usually consider to be the customer) sits.

At the end of the day the ability to scale and handle hierarchical, structured data will rely on the quality and strength of the schema and the tools that are published to enforce its fidelity and compliance.  Otherwise consuming organizations will be receiving a dozen different proprietary JSON files, and that does not address the present chaos but simply adds to it.  These issues were aired out during the meeting and it seems that everyone is aware of the risks and that they can be addressed.  Furthermore, as the schema is socialized across solutions providers, it will be apparent early if the technology will be able handle the project performance data resulting from the development of a high performance aircraft or a U.S. Navy destroyer.