Back to School Daze Blogging–DCMA Investigation on POGO, DDSTOP, $600 Ashtrays,and Epistemic Sunk Costs

Family summer visits and trips are in the rear view–as well as the simultaneous demands of balancing the responsibilities of a, you know, day job–and so it is time to take up blogging once again.

I will return to my running topic of Integrated Program and Project Management in short order, but a topic of more immediate interest concerns the article that appeared on the website for pogo.org last week entitled “Pentagon’s Contracting Gurus Mismanaged Their Own Contracts.” Such provocative headlines are part and parcel of organizations like POGO, which have an agenda that seems to cross the line between reasonable concern and unhinged outrage with a tinge conspiracy mongering. But the content of the article itself is accurate and well written, if also somewhat ripe with overstatement, so I think it useful to unpack what it says and what it means.

POGO and Its Sources

The source of the article comes from three sources regarding an internal Defense Contract Management Agency (DCMA) IT project known as the Integrated Workflow Management System (IWMS). These consist of a September 2017 preliminary investigative report, an April 2018 internal memo, and a draft of the final report.

POGO begins the article by stating that DCMA administers over $5 trillion in contracts for the Department of Defense. The article erroneously asserts that it also negotiates these contracts, apparently not understanding the process of contract oversight and administration. The cost of IWMS was apparently $46.6M and the investigation into the management and administration of the program was initiated by the then-Commander of DCMA, Lieutenant General Wendy Masiello, shortly before she retired from the government in May 2017.

The implication here, given the headline, seems to be that if there is a problem in internal management within the agency, then that would translate into questioning its administration of the $5 trillion in contract value. I view it differently, given that I understand that there are separate lines of responsibility in the agency that do not overlap, particularly in IT. Of the $46.6M there is a question of whether $17M in value was properly funded. More on this below, but note that, to put things in perspective, $46.6M is .000932% of DCMA’s oversight responsibility. This is aside from the fact that the comparison is not quite correct, given that the CIO had his own budget, which was somewhat smaller and unrelated to the $5 trillion figure. But I think it important to note that POGO’s headline and the introduction of figures, while sounding authoritative, are irrelevant to the findings of the internal investigation and draft report. This is a scare story using scare numbers, particularly given the lack of context. I had some direct experience in my military career with issues inspired by the POGO’s founders’ agenda that I will cover below.

In addition to the internal investigation on IWMS, there was also an inspector general (IG) investigation of thirteen IT services contracts that resulted in what can only be described as pedestrian procedural discrepancies that are easily correctable, despite the typically overblown language found in most IG reports. Thus, I will concentrate on this post on the more serious findings of the internal investigation.

My Own Experience with DCMA

A note at this point on full disclosure: I have done business with and continue to do business with DCMA, both as a paid supplier of software solutions, and have interacted with DCMA personnel at publicly attended professional forums and workshops. I have no direct connection, as far as I am aware, to the IWMS program, though given that the assessment is to the IT organization, it is possible that there was an indirect relationship. I have met Lieutenant General Masiello and dealt with some of her subordinates not only during her time at DCMA, but also in some of her previous assignments in Air Force. I always found her to be an honest and diligent officer and respect her judgment. Her distinguished career speaks for itself. I have talked on the telephone to some of the individuals mentioned in the article on unrelated matters, and was aware of their oversight of some of my own efforts. My familiarity with all of them was both businesslike and brief.

As a supplier to DCMA my own contracts and the personnel that administer them were, from time-to-time, affected by the fallout from what I now know to have occurred. Rumors have swirled in our industry regarding the alleged mismanagement of an IT program in DCMA, but until the POGO article, the reasons for things such as a temporary freeze and review of existing IT programs and other actions were viewed as part and parcel of managing a large organization. I guess the explanation is now clear.

The Findings of the Investigation

The issue at hand is largely surrounding the method of source selection, which may have constituted a conflict of interest, and the type of money that was used to fund the program. In reading the report I was reminded of what Glen Alleman recently wrote in his blog entitled “DDSTOP: The Saga Continues.” The acronym DDSTOP means: Don’t Do Stupid Things On Purpose.

There is actually an economic behavioral principle for DDSTOP that explains why people make and double down on bad decisions and irrational beliefs. It is called epistemic sunk cost. It is what causes people to double down in gambling (to the great benefit of the house), to persist in mistaken beliefs, and, as stated in the link above, to “persist with the option which they have already invested in and resist changing to another option that might be more suitable regarding the future requirements of the situation.” The findings seem to document a situation that fits this last description.

In going over the findings of the report, it appears that IWMS’s program violated the following:

a. Contractual efforts in the program that were appropriate for the use of Research, Development, Test and Evaluation (R,D,T & E) funds as opposed to those appropriate for O&M (Operations and Maintenance) funds. What the U.S. Department of Defense calls “color of money.”

b. Amounts that were expended on contract that exceeded the authorized funding documents, which is largely based on the findings regarding the appropriate color of money. This would constitute a serious violation known as an Anti-Deficiency Act violation which, in layman’s terms, is directed to punish public employees for the misappropriation of government funds.

c. Expended amounts of O&M that exceeded the authorized levels.

d. Poor or non-existent program management and cost performance management.

e. Inappropriate contracting vehicles that, taken together, sidestepped more stringent oversight, aside from the award of a software solutions contract to the same company that defined the agency’s requirements.

Some of these are procedural and some are serious, particularly the Anti-deficiency Act (ADA) violations, are serious. In the Contracting Officer’s rulebook, you can withstand pedestrian procedural and administrative findings that are part and parcel of running an intensive contracting organization that acquires a multitude of supplies and services under deadline. But an ADA violation is the deadly one, since it is a violation of statute.

As a result of these findings, the recommendation is for DCMA to lose acquisition authority over the DoD micro-contracting level ($10,000). Organizationally and procedurally, this is a significant and mission-disruptive recommendation.

The Role and Importance of DCMA

DCMA performs an important role in contract compliance and oversight to ensure that public monies are spent properly and for the intended purpose. They perform this role mostly on contracts that are negotiated and entered into by other agencies and the military services within the Department of Defense, where they are assigned contract administration duties. Thus, the fact that DCMA’s internal IT acquisition systems and procedures were problematic is embarrassing.

But some perspective is necessary because there is a drive by some more extreme elements in Congress and elsewhere that would like to see the elimination of the agency. I believe that this would be a grave mistake. As John F. Kennedy is quoted as having said: “You don’t tear your fences down unless you know why they were put up.”

For those of you who were not around prior to the formation of DCMA or its predecessor organization, the Defense Contract Management Command (DCMC), it is important to note that the formation of the agency is a result of acquisition reform. Prior to 1989 the contract administration services (CAS) capabilities of the military services and various DoD offices varied greatly in capability, experience, and oversight effectiveness.Some of these duties had been assigned to what is now the Defense Logistics Agency (DLA), but major acquisition contracts remained with the Services.

For example, when I was on active duty as a young Navy Supply Corps Officer as part of the first class that was to be the Navy Acquisition Corps, I was taught cradle-to-grave contracting. That is, I learned to perform customer requirements development, economic analysis, contract planning, development of a negotiating position, contract negotiation, and contract administration–soup to nuts. The expense involved in developing and maintaining the skill set required of personnel to maintain such a broad-based expertise is unsustainable. For analogy, it is as if every member of a baseball club must be able to play all nine positions at the same level of expertise; it is impossible.

Furthermore, for contract administration a defense contractor would have contractual obligations for oversight in San Diego, where I was stationed, that were different from contracts awarded in Long Beach or Norfolk or any of the other locations where a contracting office was located. Furthermore, the military services, having their own organizational cultures, provided additional variations that created a plethora of unique requirements that added cost, duplication, inconsistency, and inter-organizational conflict.

This assertion is more than anecdotal. A series of studies were commissioned in the 1980s (the findings of which were subsequently affirmed) to eliminate duplication and inconsistency in the administration of contracts, particularly major acquisition programs. Thus, DCMC was first established under DLA and subsequently became its own agency. Having inherited many of the contracting field office, the agency has struggled to consolidate operations so that CAS is administered in a consistent manner across contracts. Because contract negotiation and program management still resides in the military services, there is a natural point of conflict between the services and the agency.

In my view, this conflict is a healthy one, as all power in the hands of a single individual, such as a program manager, would lead to more fraud, waste, and abuse, not less. Internal checks and balances are necessary in proper public administration, where some efficiency is sacrificed to accountability. It is not just the goal of government to “make the trains run on time”, but to perform oversight of the public’s money so that there is accountability in its expenditure, and integrity in systems and procedures. In the case of CAS, it is to ensure that what is being procured actually gets delivered in conformance to the contract terms and conditions designed to reduce the inherent risk in complex acquisition programs.

In order to do its job effectively, DCMA requires innovative digital systems to allow it to perform its CAS function. As a result, the agency must also possess an acquisition capability. Given the size of the task at hand in performing CAS on over $5 trillion of contract effort, the data involved is quite large, and the number of personnel geographically distributed. The inevitable comparisons to private industry will arise, but few companies in the world have to perform this level of oversight on such a large economic scale, which includes contracts comprising every major supplier to the U.S. Department of Defense, involving detailed knowledge of the management control systems of those companies that receive the taxpayer’s money. Thus, this is a uniquely difficult job. When one understands that in private industry the standard failure rate of IT projects is more than 70% percent, then one cannot help but be unimpressed by these findings, given the challenge.

Assessing the Findings and Recommendations

There is a reason why internal oversight documents of this sort stay confidential–it is because these are preliminary/draft findings and there are two sides to every story which may lead to revisions. In addition, reading these findings without the appropriate supporting documentation can lead one to the wrong impression and conclusions. But it is important to note that this was an internally generated investigation. The checks and balances of management oversight that should occur, did occur. But let’s take a close look at what the reports indicate so that we can draw some lessons. I also need to mention here that POGO’s conflation of the specific issues in this program as a “poster child” for cost overruns and schedule slippage displays a vast ignorance of DoD procurement systems on the part of the article’s author.

Money, Money, Money

The core issue in the findings revolves around the proper color of money, which seems to hinge on the definition of Commercial-Off-The-Shelf (COTS) software and the effort that was expended using the two main types of money that apply to the core contract: RDT&E and O&M.

Let’s take the last point first. It appears that the IWMS effort consisted of a combination of COTS and custom software. This would require acquisition, software familiarization, and development work. It appears that the CIO was essentially running a proof-of-concept to see what would work, and then incrementally transitioned to developing the solution.

What is interesting is that there is currently an initiative in the Department of Defense to do exactly what the DCMA CIO did as part of his own initiative in introducing a new technological approach to create IWMS. It is called Other Transactional Authority (OTA). The concept didn’t exist and was not authorized until the 2016 NDAA and is given specific statutory authority under 10 U.S.C. 2371b. This doesn’t excuse the actions that led to the findings, but it is interesting that the CIO, in taking an incremental approach to finding a solution, also did exactly what was recommended in the 2016 GAO report that POGO references in their article.

Furthermore, as a career Navy Supply Corps Officer, I have often gotten into esoteric discussions in contracts regarding the proper color of money. Despite the assertion of the investigation, there is a lot of room for interpretation in the DoD guidance, not to mention a stark contrast in interpreting the proper role of RDT&E and O&M in the procurement of business software solutions.

When I was on the NAVAIR staff and at OSD I ran into the difference in military service culture where what Air Force financial managers often specified for RDT&E would never be approved by Navy financial managers where, in the latter case, they specified that only O&M dollars applied, despite whether development took place. Given that there was an Air Force flavor to the internal investigation, I would be interested to know whether the opinion of the investigators in making an ADA determination would withstand objective scrutiny among a panel of government comptrollers.

I am certain that, given the differing mix of military and civil service cultures at DCMA–and the mixed colors of money that applied to the effort–that the legal review that was sought to resolve the issue. One of the principles of law is that when you rely upon legal advice to take an action that you have a defense, unless your state of mind and the corollary actions that you took indicates that you manipulated the system to obtain a result that shows that you intended to violate the law. I just do not see that here, based on what has been presented in the materials.

It is very well possible that an inadvertent ADA violation occurred by default because of an improper interpretation of the use of the monies involved. This does not rise to the level of a scandal. But going back to the confusion that I have faced from my own experiences on active duty, I certainly hope that this investigation is not used as a precedent to review all contracts under the approach of accepting a post-hoc alternative interpretation by another individual who just happens to be an inspector long after a reasonable legal determination was made, regardless of how erroneous the new expert finds the opinion. This is not an argument against accountability, but absent corruption or criminal intent, a legal finding is a valid defense and should stand as the final determination for that case.

In addition, this interpretation of RDT&E vs. O&M relies upon an interpretation of COTS. I daresay that even those who throw that term around and who are familiar with the FAR fully understand what constitutes COTS when the line between adaptability and point solutions is being blurred by new technology.

Where the criticism is very much warranted are those areas where the budget authority would have been exceeded in any event–and it is here that the ADA determination is most damning. It is one thing to disagree on the color of money that applies to different contract line items, but it is another to completely lack financial control.

Part of the reason for lack of financial control was the absence of good contracting practices and the imposition of program management.

Contracts 101

While I note that the CIO took an incremental approach to IWMS–what a prudent manager would seem to do–what was lacking was a cohesive vision and a well-informed culture of compliance to acquisition policy that would avoid even the appearance of impropriety and favoritism. Under the OTA authority that I reference above as a new aspect of acquisition reform, the successful implementation of a proof-of-concept does not guarantee the incumbent provider continued business–salient characteristics for the solution are publicized and the opportunity advertised under free and open competition.

After all, everyone has their favorite applications and, even inadvertently, an individual can act improperly because of selection bias. The procurement procedures are established to prevent abuse and favoritism. As a solution provider I have fumed quite often where a selection was made without competition based on market surveys or use of a non-mandatory GSA contract, which usually turn out to be a smokescreen for pre-selection.

There are two areas of fault on IMWS from the perspective of acquisition practice, and another in relation to program management.

These are the initial selection of Apprio, which had laid out the initial requirements and subsequently failed to have the required integration functionality, and then, the selection of Discover Technologies under a non-mandatory GSA Blanket Purchase Agreement (BPA) contract under a sole source action. Furthermore, the contract type was not appropriate to the task at hand, and the arbitrary selection of Discover precluded the agency finding a better solution more fit to its needs.

The use of the GSA BPA allowed managers, however, to essentially spit the requirements to stay below more stringent management guidelines–an obvious violation of acquisition regulation that will get you removed from your position. This leads us to what I think is the root cause of all of these clearly avoidable errors in judgment.

Program Management 101

Personnel in the agency familiar with the requirements to replace the aging procurement management system understood from the outset that the total cost would probably fall somewhere between $20M and $40M. Yet all effort was made to reduce the risk by splitting requirements and failing to apply a programmatic approach to a clearly complex undertaking.

This would have required the agency to take the steps to establish an acquisition strategy, open the requirement based on a clear performance work statement to free and open competition, and then to establish a program management office to manage the effort and to allow oversight of progress and assessment of risks in a formalized environment.

The establishment of a program management organization would have prevented the lack of financial control, and would have put in place sufficient oversight by senior management to ensure progress and achievement of organizational goals. In a word, a good deal of the decision-making was based on doing stupid things on purpose.

The Recommendations

In reviewing the recommendations of the internal investigation, I think my own personal involvement in a very similar issue from 1985 will establish a baseline for comparison.

As I indicated earlier, in the early 1980s, as a young Navy commissioned officer, I was part of the first class of what was to be the Navy Acquisition Corps, stationed at the Supply Center in San Diego, California. I had served as a contracting intern and, after extensive education through the University of Virginia Darden School of Business, the extended Federal Acquisition Regulation (FAR) courses that were given at the time at Fort Lee, Virginia, and coursework provided by other federal acquisition organizations and colleges, I attained my warrant as a contracting officer. I also worked on acquisition reform issues, some of which were eventually adopted by the Navy and DoD.

During this time NAS Miramar was the home of Top Gun. In 1984 Congressman Duncan Hunter (the elder not the currently indicted junior of the same name, though from the same San Diego district), inspired by news of $7,600 coffee maker and a $435 hammer publicized by the founders of POGO, was given documents by a disgruntled employee at the base regarding the acquisition of replacement E-2C ashtrays that had a cost of $300. He presented them to the Base Commander, which launched an investigation.

I served on the JAG investigation under the authority of the Wing Commander regarding the acquisitions and then, upon the firing of virtually the entire chain of command at NAS Miramar, which included the Wing Commander himself, became the Officer-in-Charge of Supply Center San Diego Detachment NAS Miramar. Under Navy Secretary Lehman’s direction I was charged with determining the root cause of the acquisition abuses and given 60-90 days to take immediate corrective action and clear all possible discrepancies.

I am not certain who initiated the firings of the chain of command. From talking with contemporaneous senior personnel at the time it appeared to have been instigated in a fit of pique by the sometimes volcanic Secretary of Defense Caspar Weinberger. While I am sure that Secretary Weinberger experienced some emotional release through that action, placed in perspective, his blanket firing of the chain of command, in my opinion, was poorly advised and counterproductive. It was also grossly unfair, given what my team and I found as the root cause.

First of all, the ashtray was misrepresented in the press as a $600 ashtray because during the JAG I had sent a sample ashtray to the Navy industrial activity at North Island with a request to tell me what the fabrication of one ashtray would cost and to provide the industrial production curve that would reduce the unit price to a reasonable level. The figure of $600 was to fabricate one. A “whistleblower” at North Island took this slice of information out of context and leaked it to the press. So the $300 ashtray, which was bad enough, became the $600 ashtray.

Second, the disgruntled employee who gave the files to Congressman Hunter had been laterally assigned out of her position as a contracting officer by the Supply Officer because of the very reason that the pricing of the ashtray was not reasonable, among other unsatisfactory performance measures that indicated that she was not fit to perform those duties.

Third, there was a systemic issue in the acquisition of odd parts. For some reason there was an ashtray in the cockpit of the E-2C. These aircraft were able to stay in the air an extended period of time. A pilot had actually decided to light up during a local mission and, his attention diverted, lost control of the aircraft and crashed. Secretary Lehman ordered corrective action. The corrective action taken by the squadron at NAS Miramar was to remove the ashtray from the cockpit and store them in a hangar locker.

Four, there was an issue of fraud. During inspection the spare ashtrays were removed and deposited in the scrap metal dumpster on base. The tech rep for the DoD supplier on base retrieved the ashtrays and sold them back to the government for the price to fabricate one, given that the supply system had not experienced enough demand to keep them in stock.

Fifth, back to the systemic issue. When an aircraft is to be readied for deployment there can be no holes representing missing items in the cockpit. A deploying aircraft with this condition is then grounded and a high priority “casuality report” or CASREP is generated. The CASREP was referred to purchasing which then paid $300 for each ashtray. The contracting officer, however, feeling under pressure by the high priority requisition, did not do due diligence in questioning the supplier on the cost of the ashtray. In addition, given that several aircraft deploy, there were a number of these requisitions that should have led the contracting officer to look into the matter more closely to determine price reasonableness.

Furthermore, I found that buying personnel were not properly trained, that systems and procedures were not established or enforced, that the knowledge of the FAR was spotty, and that procurements did not go through multiple stages of review to ensure compliance with acquisition law, proper documentation, and administrative procedure.

Note that in the end this “scandal” was born by a combination of systemic issues, poor decision-making, lack of training, employee discontent, and incompetence.

I successfully corrected the issues at NAS Miramar during the prescribed time set by the Secretary of the Navy, worked with the media to instill public confidence in the system, built up morale, established better customer service, reduced procurement acquisition lead times (PALT), recommended necessary disciplinary action where it seemed appropriate, particularly in relation to the problematic employee, recovered monies from the supplier, referred the fraud issues to Navy legal, and turned over duties to a new chain of command.

NAS Miramar procurement continued to do its necessary job and is still there.

What the higher chain of command did not do was to take away the procurement authority of NAS Miramar. It did not eliminate or reduce the organization. It did not close NAS Miramar.

It requires leadership and focus to take effective corrective action to not only fix a broken system, but to make it better while the corrective actions are being taken. As I outlined above, DCMA performs an essential mission. As it transitions to a data-driven approach and works to reduce redundancy and inefficiency in its systems, it will require more powerful technologies to support its CAS function, and the ability to acquire those technologies to support that function.

(Data) Transformation–Fear and Loathing over ETL in Project Management

ETL stands for data extract, transform, and load. This essential step is the basis for all of the new capabilities that we wish to acquire during the next wave of information technology: business analytics, big(ger) data, interdisciplinary insight into processes that provide insights into improving productivity and efficiency.

I’ve been dealing with a good deal of fear and loading regarding the introduction of this concept, even though in my day job my organization is a leading practitioner in the field in its vertical. Some of this is due to disinformation by competitors in playing upon the fears of the non-technically minded–the expected reaction of those who can’t do in the last throws of avoiding irrelevance. Better to baffle them with bullshit than with brilliance, I guess.

But, more importantly, part of this is due to the state of ETL and how it is communicated to the project management and business community at large. There is a great deal to be gained here by muddying the waters even by those who know better and have the technology. So let’s begin by clearing things up and making this entire field a bit more coherent.

Let’s start with the basics. Any organization that contains the interaction of people is a system. For purposes of a project management team, a business enterprise, or a governmental body we deal with a special class of systems known as Complex Adaptive Systems: CAS for short. A CAS is a non-linear learning system that reacts and evolves to its environment. It is complex because of the inter-relationships and interactions of more than two agents in any particular portion of the system.

I was first introduced to the concept of CAS through readings published out of the Santa Fe Institute in New Mexico. Most noteworthy is the work The Quark and the Jaguar by the physicist Murray Gell-Mann. Gell-Mann is received the Nobel in physics in 1969 for his work on elementary particles, such as the quark, and is co-founder of the Institute. He also was part of the team that first developed simulated Monte Carlo analysis during a period he spent at RAND Corporation. Anyone interested in the basic science of quanta and how the universe works that then leads to insights into subjects such as day-to-day probability and risk should read this book. It is a good popular scientific publication written by a brilliant mind, but very relevant to the subjects we deal with in project management and information science.

Understanding that our organizations are CAS allows us to apply all sorts of tools to better understand them and their relationship to the world at large. From a more practical perspective, what are the risks involved in the enterprise in which we are engaged and what are the probabilities associated with any of the range of outcomes that we can label as success. For my purposes, the science of information theory is at the forefront of these tools. In this world an engineer by the name of Claude Shannon working at Bell Labs essentially invented the mathematical basis for everything that followed in the world of telecommunications, generating, interpreting, receiving, and understanding intelligence in communication, and the methods of processing information. Needless to say, computing is the main recipient of this theory.

Thus, all CAS process and react to information. The challenge for any entity that needs to survive and adapt in a continually changing universe is to ensure that the information that is being received is of high and relevant quality so that the appropriate adaptation can occur. There will be noise in the signals that we receive. What we are looking for from a practical perspective in information science are the regularities in the data so that we can make the transformation of receiving the message in a mathematical manner (where the message transmitted is received) into the definition of information quality that we find in the humanities. I believe that we will find that mathematical link eventually, but there is still a void there. A good discussion of this difference can be found here in the on-line publication Double Dialogues.

Regardless of this gap, the challenge of those of us who engage in the business of ETL must bring to the table the ability not only to ensure that the regularities in the information are identified and transmitted to the intended (or necessary) users, but also to distinguish the quality of the message in the terms of the purpose of the organization. Shannon’s equation is where we start, not where we end. Given this background, there are really two basic types of data that we begin with when we look at a set of data: structured and unstructured data.

Structured data are those where the qualitative information content is either predefined by its nature or by a tag of some sort. For example, schedule planning and performance data, regardless of the idiosyncratic/proprietary syntax used by a software publisher, describes the same phenomena regardless of the software application. There are only so many ways to identify snow–and, no, the Inuit people do not have 100 words to describe it. Qualifiers apply in the humanities, but usually our business processes more closely align with statistical and arithmetic measures. As a result, structured data is oftentimes defined by its position in a hierarchical, time-phased, or interrelated system that contains a series of markers, indexes, and tables that allow it to be interpreted easily through the identification of a Rosetta stone, even when the system, at first blush, appears to be opaque. When you go to a book, its title describes what it is. If its content has a table of contents and/or an index it is easy to find the information needed to perform the task at hand.

Unstructured data consists of the content of things like letters, e-mails, presentations, and other forms of data disconnected from its source systems and collected together in a flat repository. In this case the data must be mined to recreate what is not there: the title that describes the type of data, a table of contents, and an index.

All data requires initial scrubbing and pre-processing. The difference here is the means used to perform this operation. Let’s take the easy path first.

For project management–and most business systems–we most often encounter structured data. What this means is that by understanding and interpreting standard industry terminology, schemas, and APIs that the simple process of aligning data to be transformed and stored in a database for consumption can be reduced to a systemic and repeatable process without the redundancy of rediscovery applied in every instance. Our business intelligence and business analytics systems can be further developed to anticipate a probable question from a user so that the query is pre-structured to allow for near immediate response. Further, structuring the user interface in such as way as to make the response to the query meaningful, especially integrated with and juxtaposed other types of data requires subject matter expertise to be incorporated into the solution.

Structured ETL is the place that I most often inhabit as a provider of software solutions. These processes are both economical and relatively fast, particularly in those cases where they are applied to an otherwise inefficient system of best-of-breed applications that require data transfers and cross-validation prior to official reporting. Time, money, and effort are all saved by automating this process, improving not only processing time but also data accuracy and transparency.

In the case of unstructured data, however, the process can be a bit more complicated and there are many ways to skin this cat. The key here is that oftentimes what seems to be unstructured data is only so because of the lack of domain knowledge by the software publisher in its target vertical.

For example, I recently read a white paper published by a large BI/BA publisher regarding their approach to financial and accounting systems. My own experience as a business manager and Navy Supply Corps Officer provide me with the understanding that these systems are highly structured and regulated. Yet, business intelligence publishers treated this data–and blatantly advertised and apparently sold as state of the art–an unstructured approach to mining this data.

This approach, which was first developed back in the 1980s when we first encountered the challenge of data that exceeded our expertise at the time, requires a team of data scientists and coders to go through the labor- and time-consuming process of pre-processing and building specialized processes. The most basic form of this approach involves techniques such as frequency analysis, summarization, correlation, and data scrubbing. This last portion also involves labor-intensive techniques at the microeconomic level such as binning and other forms of manipulation.

This is where the fear and loathing comes into play. It is not as if all information systems do not perform these functions in some manner, it is that in structured data all of this work has been done and, oftentimes, is handled by the database system. But even here there is a better way.

My colleague, Dave Gordon, who has his own blog, will emphasize that the identification of probable questions and configuration of queries in advance combined with the application of standard APIs will garner good results in most cases. Yet, one must be prepared to receive a certain amount of irrelevant information. For example, the query on Google of “Fun Things To Do” that you may use if you are planning for a weekend will yield all sorts of results, such as “50 Fun Things to Do in an Elevator.”  This result includes making farting sounds. The link provides some others, some of which are pretty funny. In writing this blog post, a simple search on Google for “Google query fails” yields what can only be described as a large number of query fails. Furthermore, this approach relies on the data originator to have marked the data with pointers and tags.

Given these different approaches to unstructured data and the complexity involved, there is a decision process to apply:

1. Determine if the data is truly unstructured. If the data is derived from a structured database from an existing application or set of applications, then it is structured and will require domain expertise to inherit the values and information content without expending unnecessary resources and time. A structured, systemic, and repeatable process can then be applied. Oftentimes an industry schema or standard can be leveraged to ensure consistency and fidelity.

2. Determine whether only a portion of the unstructured data is relative to your business processes and use it to append and enrich the existing structured data that has been used to integrate and expand your capabilities. In most cases the identification of a Rosetta Stone and standard APIs can be used to achieve this result.

3. For the remainder, determine the value of mining the targeted category of unstructured data and perform a business case analysis.

Given the rapidly expanding size of data that we can access using the advancing power of new technology, we must be able to distinguish between doing what is necessary from doing what is impressive. The definition of Big Data has evolved over time because our hardware, storage, and database systems allow us to access increasingly larger datasets that ten years ago would have been unimaginable. What this means is that–initially–as we work through this process of discovery, we will be bombarded with a plethora of irrelevant statistical measures and so-called predictive analytics that will eventually prove out to not pass the “so-what” test. This process places the users in a state of information overload, and we often see this condition today. It also means that what took an army of data scientists and developers to do ten years ago takes a technologist with a laptop and some domain knowledge to perform today. This last can be taught.

The next necessary step, aside from applying the decision process above, is to force our information systems to advance their processing to provide more relevant intelligence that is visualized and configured to the domain expertise required. In this way we will eventually discover the paradox that effectively accessing larger sets of data will yield fewer, more relevant intelligence that can be translated into action.

At the end of the day the manager and user must understand the data. There is no magic in data transformation or data processing. Even with AI and machine learning it is still incumbent upon the people within the organization to be able to apply expertise, perspective, knowledge, and wisdom in the use of information and intelligence.

Move It On Over — Third and Fourth Generation Software: A Primer

While presenting to organizations regarding business intelligence and project management solutions I often find myself explaining the current state of programming and what current technology brings to the table. Among these discussions is the difference between third and fourth generation software, not just from the perspective of programming–or the Wikipedia definition (which is quite good, see the links below)–but from a practical perspective.

Recently I ran into someone who asserted that their third-generation software solution was advantageous over a fourth generation one because it was “purpose built.” My response was that a fourth generation application provides multiple “purpose built” solutions from one common platform in a more agile and customer-responsive environment. For those unfamiliar with the differences, however, this simply sounded like a war of words rather than the substantive debate that it was.

For anyone who has used a software application they are usually not aware of the three basic logical layers that make up the solution. These are the business logic layer, the application layer, and the database structure. The user interface delivers the result of the interaction of these three layers to the user–what is seen on the screen.

Back during the early advent of the widespread use of PCs and distributed computing on centralized systems, a group of powerful languages were produced that allowed the machine operations to be handled by an operating system and for software developers to write code to focus on “purpose built” solutions.

Initially these efforts concentrated on automated highly labor-intensive activities to achieve maximum productivity gains in an organization, and to leverage those existing systems to distribute information that previously would require many hours of manual effort in terms of mathematical and statistical calculation and visualization. The solutions written were based on what were referred to as third generation languages, and they are familiar even to non-technical people: Fortran, Cobol, C+, C++, C#, and Java, among others. These languages are highly structured and require a good bit of expertise to correctly program.

In third generation environments, the coder specifies operations that the software must perform based on data structure, application logic, and pre-coded business logic.These three levels of highly integrated and any change in one of them requires that the programmer trace the impact of that change to ensure that the operations in the other two layers are not affected. Oftentimes, the change has a butterfly effect, requiring detailed adjustments to take into the account the subtleties in processing. It is this highly structured, interdependent, “purpose built” structure that causes unanticipated software bugs to pop up in most applications. It is also the reason why software development and upgrade configuration control is also highly structured and time-consuming–requiring long lead-times to even deliver what most users view as relatively mundane changes and upgrades, like a new chart or graph.

In contrast, fourth generation applications separate the three levels and control the underlying behavior of the operating environment by leveraging a standard framework, such as .NET. The .NET operating environment, for example, controls both a library of interoperability across programming languages (known as a Framework Class Library or FCL), and virtual machine that handles exception handling, memory management, and other common functions (known as Common Language Runtime or CLR).

With the three layers separated, with many of the more mundane background tasks being controlled by the .NET framework, a great deal of freedom is provided to the software developer that provides real benefits to customers and users.

For example, the database layer is freed from specific coding from the application layer, since the operating environment allows libraries of industry standard APIs to be leveraged, making the solution agnostic to data. Furthermore, the business logic/UI layer allows for table-driven and object-oriented configuration that creates a low code environment, which not only allows for rapid roll-out of new features and functionality (since hard-coding across all three layers is eschewed), but also allows for more precise targeting of functionality based on the needs of user groups (or any particular user).

This is what is meant in previous posts by new technology putting the SME back in the driver’s seat, since pre-defined reports and objects (GUIs) at the application layer allow for immediate delivery of functionality. Oftentimes data from disparate data sources can be bound together through simple query languages and SQL, particularly if the application layer table and object functionality is built well enough.

When domain knowledge is incorporated into the business logic layer, the distinction between generic BI and COTS is obliterated. Instead, what we have is a hybrid approach that provides the domain specificity of COTS (‘purpose built”), with the power of BI that reduces the response time between solution design and delivery. More and better data can also be accessed, establishing an environment of discovery-driven management.

Needless to say, properly designed Fourth Generation applications are perfectly suited to rapid application development and deployment approaches such as Agile. They also provide the integration potential, given the agnosticism to data, that Third Generation “purpose built” applications can only achieve through data transfer and reconciliation across separate applications that never truly achieve integration. Instead, Fourth Generation applications can subsume the specific “purpose built” functionality found in stand-alone applications and deliver it via a single platform that provides one source of truth, still allowing for different interpretations of the data through the application of differing analytical approaches.

So move it on over nice (third generation) dog, a big fat (fourth generation) dog is moving in.

Learning the (Data) — Data-Driven Management, HBR Edition

The months of December and January are usually full of reviews of significant events and achievements during the previous twelve months. Harvard Business Review makes the search for some of the best writing on the subject of data-driven transformation by occasionally publishing in one volume the best writing on a critical subject of interest to professional through the magazine OnPoint. It is worth making part of your permanent data management library.

The volume begins with a very concise article by Thomas C. Redman with the provocative title “Does Your Company Know What to Do with All Its Data?” He then goes on to list seven takeaways of optimizing the use of existing data that includes many of the themes that I have written about in this blog: better decision-making, innovation, what he calls “informationalize products”, and other significant effects. Most importantly, he refers to the situation of information asymmetry and how this provides companies and organizations with a strategic advantage that directly affects the bottom line–whether that be in negotiations with peers, contractual relationships, or market advantages. Aside from the OnPoint article, he also has some important things to say about corporate data quality. Highly recommended and a good reason to implement systems that assure internal information systems fidelity.

Edd Wilder-James also covers a theme that I have hammered home in a number of blog posts in the article “Breaking Down Data Silos.” The issue here is access to data and the manner in which it is captured and transformed into usable analytics. His recommended approach to a task that is often daunting is to find the path of least resistance in finding opportunities to break down silos and maximize data to apply advanced analytics. The article provides a necessary balm that counteracts the hype that often accompanies this topic.

Both of these articles are good entrees to the subject and perfectly positioned to prompt both thought and reflection of similar experiences. In my own day job I provide products that specifically address these business needs. Yet executives and management in all too many cases continue to be unaware of the economic advantages of data optimization or the manner in which continuing to support data silos is limiting their ability to effectively manage their organizations. There is no doubt that things are changing and each day offers a new set of clients who are feeling their way in this new data-driven world, knowing that the promises of almost effort-free goodness and light by highly publicized data gurus are not the reality of practitioners, who apply the detail work of data normalization and rationalization. At the end it looks like magic, but there is effort that needs to be expended up-front to get to that state. In this physical universe under the Second Law of Thermodynamics there are no free lunches–energy must be borrowed from elsewhere in order to perform work. We can minimize these efforts through learning and the application of new technology, but managers cannot pretend not to have to understand the data that they intend to use to make business decisions.

All of the longer form articles are excellent, but I am particularly impressed with the Leandro DalleMule and Thomas H. Davenport article entitled “What’s Your Data Strategy?” from the May-June 2017 issue of HBR. Oftentimes when addressing big data at professional conferences and in visiting businesses the topic often runs to the manner of handling the bulk of non-structured data. But as the article notes, less than half of an organization’s relevant structured data is actually used in decision-making. The most useful artifact that I have permanently plastered at my workplace is the graphic “The Elements of Data Strategy”, and I strongly recommend that any manager concerned with leveraging new technology to optimize data do the same. The graphic illuminates the defensive and offensive positions inherent in a cohesive data strategy leading an organization to the state: “In our experience, a more flexible and realistic approach to data and information architectures involves both a single source of truth (SSOT) and multiple versions of the truth (MVOTs). The SSOT works at the data level; MVOTs support the management of information.” Elimination of proprietary data silos, elimination of redundant data streams, and warehousing of data that is accessed using a number of analytical methods achieve the necessary states of SSOT that provides the basis for an environment supporting MVOTs.

The article “Why IT Fumbles Analytics” by Donald A. Marchand and Joe Peppard from 2013, still rings true today. As with the article cited above by Wilder-James, the emphasis here is with the work necessary to ensure that new data and analytical capabilities succeed, but the emphasis shifts to “figuring out how to use the information (the new system) generates to make better decisions or gain deeper…insights into key aspects of the business.” The heart of managing the effort in providing this capability is to put into place a project organization, as well as systems and procedures, that will support the organizational transformation that will occur as a result of the explosion of new analytical capability.

The days of simply buying an off-the-shelf silo-ed “tool” and automating a specific manual function are over, especially for organizations that wish to be effective and competitive–and more profitable–in today’s data and analytical environment. A more comprehensive and collaborative approach is necessary. As with the DalleMule and Davenport article, there is a very useful graphic that contrasts traditional IT project approaches against Analytics and Big Data (or perhaps “Bigger” Data) Projects. Though the prescriptions in the article assume an earlier concept of Big Data optimization focused on non-structured data, thereby making some of these overkill, an implementation plan is essential in supporting the kind of transformation that will occur, and managers act at their own risk if they fail to take this effect into account.

All of the other articles in this OnPoint issue are of value. The bottom line, as I have written in the past, is to keep a focus on solving business challenges, rather than buying the new bright shiny object. Alternatively, in today’s business environment the day that business decision-makers can afford to stay within their silo-ed comfort zone are phasing out very quickly, so they need to shift their attention to those solutions that address these new realities.

So why do this apart from the fancy term “data optimization”? Well, because there is a direct return-on-investment in transforming organizations and systems to data-driven ones. At the end of the day the economics win out. Thus, our organizations must be prepared to support and have a plan in place to address the core effects of new data-analytics and Big Data technology:

a. The management and organizational transformation that takes place when deploying the new technology, requiring proactive socialization of the changing environment, the teaching of new skill sets, new ways of working, and of doing business.

b. Supporting transformation from a sub-optimized silo-ed “tell me what I need to know” work environment to a learning environment, driven by what the data indicates, supporting the skills cited above that include intellectual curiosity, engaging domain expertise, and building cross-domain competencies.

c. A practical plan that teaches the organization how best to use the new capability through a practical, hands-on approach that focuses on addressing specific business challenges.

Synergy — The Economics of Integrated Project Management

The hot topic lately in meetings and the odd conference on Integrated Project Management (IPM) often focuses on the mechanics of achieving that state, bound by the implied definition of current regulation, which has also become–not surprisingly–practice. I think this is a laudable goal, particularly given both the casual resistance to change (which always there by definition to some extent) and in the most extreme cases a kind of apathy.

I addressed the latter condition in my last post by an appeal to professionalism, particularly on the part of those in public administration. But there is a more elemental issue here than the concerns of project analysts, systems engineers, and the associated information managers. While this level of expertise is essential in the development of innovation, relying too heavily on this level in the organization creates an internal organizational conflict that creates the risk that the innovation is transient and rests on a slender thread. Association with any one manager also leaves innovation vulnerable due to the “not invented here” tact taken by many new managers in viewing the initiatives of a predecessor. In business this (usually self-defeating) approach becomes more extreme the higher one goes in the chain of command (the recent Sears business model anyone?).

The key, of course, is to engage senior managers and project/program managers in participating in the development of this important part of business intelligence. A few suggestions on how to do this follow, but the bottom line is this: money and economics makes the implementation of IPM an essential component of business intelligence.

Data, Information, and Intelligence – Analysis vs. Reporting

Many years ago using manual techniques, I was employed in activities that required that I seek and document data from disparate sources, seemingly unconnected, and find the appropriate connections. The initial connection was made with a key. It could be a key word, topic, individual, technology, or government. The key, however, wasn’t the end of the process. The validity of the relationship needed to be verified as more than mere coincidence. This is a process well known in the community specializing in such processes, and two good sources to understand how this was done can be found here and here.

It is a well trod path to distinguish between the elements that eventually make up intelligence so I will not abuse the reader in going over it. Needless to say that a bit of data is the smallest element of the process, with information following. For project management what is often (mis)tagged as predictive analytics and analysis is really merely information. Thus, when project managers and decision makers look at the various charts and graphs employed by their analysts they are usually greeted with a collective yawn. Raw projections of cost variance, cost to complete, schedule variance, schedule slippage, baseline execution, Monte Carlo risk, etc. are all building blocks to employing business intelligence. But in and of themselves they are not intelligence because these indicators require analysis, weighting, logic testing, and, in the end, an assessment that is directly tied to the purpose of the organization.

The role and application of digitization is to make what was labor intensive less so. In most cases this allows us to apply digital technology to its strength–calculation and processing of large amounts of data to create information. Furthermore, digitization now allows for effective lateral integration among datasets given a common key, even if there are multiple keys that act in a chain from dataset to dataset.

At the end of the line what we are left with is a strong correlation of data integrated across a number of domains that contribute to a picture of how an effort is performing. Still, even given the most powerful heuristics, a person–the consumer–must validate the data to determine if the results possess validity and fidelity. For project management this process is not as challenging as, say, someone using raw social networking data. Project management data, since it is derived from underlying systems that through their processing mimic highly structured processes and procedures, tends to be “small”, even when it can be considered Big Data form the shear perspective of size. It is small Big Data.

Once data has been accumulated, however, it must be assessed so as to ensure that the parts cohere. This is done by assessing the significance and materiality of those parts. Once this is accomplished the overall assessment must then be constructed so that it follows logically from the data. That is what constitutes “actionable intelligence”: analysis of present condition, projected probable outcomes, recommended actions with alternatives. The elements of this analysis–charts, graphs, etc., are essential in reporting, but reporting these indices is not the purpose of the process. The added value of an analyst lies in the expertise one possesses. Without this dimension a machine could do the work. The takeaway from this point, however, isn’t to substitute the work with software. It is to develop analytical expertise.

What is Integrated Project Management?

In my last post I summed up what IPM is, but some elaboration and refinement is necessary.

I propose that Integrated Project Management is defined as that information necessary to derive actionable intelligence from all of the relevant cross-domain information involved in the project organization. This includes cost performance, schedule performance, financial performance and execution, contract implementation, milestone achievement, resource management, and technical performance. Actionable intelligence in this context, as indicated above, is that information that is relevant to the project decision-making authority which effectively identifies specific probable qualitative and quantitative risks, risk impact, and risk handling necessary to make project trade-offs, project re-baselining or re-scope, cost-as-an-independent variable (CAIV), or project cancellation decisions. Underlying all of this are feedback loop systems assessments to ensure that there is integrity and fidelity in our business systems–both human and digital.

The data upon which IPM is derived comes from a finite number of sources. Thus, project management data lends itself to solutions that break down proprietary syntax and terminology. This is really the key to achieving IPM and one that has garnered some discussion when discussing the process of data normalization and rationalization with other IT professionals. The path can be a long one: using APIs to perform data-mining directly against existing tables or against a data repository (or warehouse or lake), or pre-normalizing the data in a schema (given both the finite nature of the data and the finite–and structured–elements of the processes being documented in data).

Achieving normalization and rationalization in this case is not a notional discussion–in my vocation I provide solutions that achieve this goal. In order to do so one must expand their notion of the architecture of the appropriate software solution. The mindset of “tools” is at the core of what tends to hold back progress in integration, that is, the concept of a “tool” is one that is really based on an archaic approach to computing. It assumes that a particular piece of software must limit itself to performing limited operations focused on a particular domain. In business this is known as sub-optimization.

Oftentimes this view is supported by the organization itself where the project management team is widely dispersed and domains hoard information. The rice bowl mentality has long been a bane of organizational effectiveness. Organizations have long attempted to break through these barriers using various techniques: cross-domain teams, integrated product teams, and others.

No doubt some operations of a business must be firewalled in such a way. The financial management of the enterprise comes to mind. But when it comes to business operations, the tools and rice bowl mindset is a self-limiting one. This is why many in IT push the concept of a solution–and the analogue is this: a tool can perform a particular operation (turn a screw, hammer a nail, crimp a wire, etc.); a solution achieves a goal of the system that consists of a series of operations, which are often complex (build the wall, install the wiring, etc.). Software can be a tool or a solution. Software built as a solution contains the elements of many tools.

Given a solution that supports IPM, a pathway is put in place that facilitates breaking down the barriers that currently block effective communication between and within project teams.

The necessity of IPM

An oft-cited aphorism in business is that purpose drives profit. For those in public administration purpose drives success. What this means is that in order to become successful in any endeavor that the organization must define itself. It is the nature of the project–a planned set of interrelated tasks separately organized and financed from the larger enterprise, which is given a finite time and budget specifically to achieve a goal of research, development, production, or end state–that defines an organization’s purpose: building aircraft, dams, ships, software, roads, bridges, etc.

A small business is not so different from a project organization in a larger enterprise. Small events can have oversized effects. What this means in very real terms is that the core rules of economics will come to bear with great weight on the activities of project management. In the world in which we operate, the economics underlying both enterprises and projects punishes inefficiency. Software “tools” that support sub-optimization are inefficient and the organizations that employ them bear unnecessary risk.

The information and technology sectors have changed what is considered to be inefficient in terms of economics. At its core, information has changed the way we view and leverage information. Back in 1997 economists Brad DeLong and Michael Froomkin identified the nature of information and its impact on economics. Their concepts and observations have had incredible staying power if, for no other reason, because what they predicted has come to pass. The economic elements of excludability, rivalry, transparency have transformed how the enterprise achieves optimization.

An enterprise that is willfully ignorant of its condition is one that is at risk. Given that many projects will determine the success of the enterprise, a project that is willfully ignorant of its condition threatens the financial health and purpose of the larger organization. Businesses and public sector agencies can no longer afford not to have cohesive and actionable intelligence built on all of the elements that contribute to determining that condition. In this way IPM becomes not only essential but its deployment necessary.

In the end the reason for doing this comes down to profit on the one hand, and success on the other. Given the increasing transparency of information and the continued existence of rivalry, the trend in the economy will be to reward those that harness the potentials for information integration that have real consequences in the management of the enterprise, and to punish those who do not.

All Along the Watch Tower — Project Monitoring vs. Project Management

My two month summer blogging hiatus has come to a close. Along the way I have gathered a good bit of practical knowledge related to introducing and implementing process and technological improvements into complex project management environments. More specifically, my experience is in introducing new adaptive technologies that support the integration of essential data across the project environment–integrated project management in short–and do so by focusing on knowledge discovery in databases (KDD).

An issue that arose during these various opportunities reminded me of the commercial where a group of armed bank robbers enter a bank and have everyone lay on the floor. One of the victims whispers to a uniformed security officer, “Hey, do something!” The security officer replies, “Oh, I’m not a security guard, I’m a security monitor. I only notify people if there is a robbery.” He looks to the robbers who have a hostage and then turns back to the victim and says calmly, “There’s a robbery.”

We oftentimes face the same issues in providing project management solutions. New technologies have expanded the depth and breadth of information that is available to project management professionals. Oftentimes the implementation of these solutions get to the heart as to whether people considers themselves project managers or project monitors.

Technology, Information, and Cognitive Dissonance

This perceptual conflict oftentimes plays itself out in resistance to change in automated systems. In today’s world the question of acceptance is a bit different than when I first provided automated solutions into organizations more than 30 years ago. At that time, which represented the first modern wave of digitization, focused on simply automating previously manual functions that supported existing line-and-staff organizations. Software solutions were constructed to fit into the architecture of the social or business systems being served, regardless of whether those systems were inefficient or sub-optimal.

The challenge is a bit different today. Oftentimes new technology is paired with process changes that will transform an organization–and quite often is used as the leading edge in that initiative. The impact on work is transformative, shifting the way that the job and the system itself is perceived given the new information.

Leon Festinger in his work A Theory of Cognitive Dissonance (1957) stated that people seek psychological consistency in order to function in the real world. When faced with information or a situation that is contradictory to consistency, individuals will experience psychological discomfort. The individual can then simply adapt to the new condition by either accepting the change, adding rationalizations to connect their present perceptions to the change, or to challenge the change–either by attacking it as valid, by rejecting its conclusions, or by avoidance.

The most problematic of the reactions that can be encountered in IT project management are the last two. When I have introduced a new technology paired with process change this manifestation has usually been justified by the refrains that:

a. The new solution is too hard to understand;

b. The new solution is too detailed;

c. The new solution is too different from the incumbent technology;

d. The solution is unrelated to “my job of printing out one PowerPoint chart”;

e. “Why can’t I just continue to use my own Excel workbooks/Access database/solution”;

f. “Earned value/schedule/risk management/(add PM methodology here) doesn’t tell me what I don’t already know/looks in the rear view mirror/doesn’t add enough value/is too expensive/etc.”

For someone new to this kind of process the objections often seem daunting. But some perspective always helps. To date, I have introduced and implemented three waves of technology over the course of my career and all initially encountered resistance, only to eventually be embraced. In a paradoxical twist (some would call it divine justice, karma, or universal irony), oftentimes the previous technology I championed, which sits as the incumbent, is used as a defense against the latest innovation.

A reasonable and diligent person involved in the implementation of any technology which, after all, is also project management, must learn to monitor conditions to determine if there is good reason for resistance, or if it is a typical reaction to relatively rapid change in a traditionally static environment. The point, of course, is not only to meet organizational needs, but to achieve a high level of acceptance in software deployment–thus maximizing ROI for the organization and improving organizational effectiveness.

If process improvement is involved, an effective pairing and coordination with stakeholders is important. But such objections, while oftentimes a reaction to people receiving information they prefer not to have, are ignored at one’s own peril. This is where such change processes require both an analytical and leadership-based approach.

Technology and Cultural Change – Spock vs. Kirk

In looking at resistance one must determine whether the issue is one of technology or some reason of culture or management. Testing the intuitiveness of the UI, for example, is best accomplished by beta testing among SMEs. Clock speeds latency, reliability, accuracy, and fidelity in data, and other technological characteristics are easily measured and documented. This is the Mr. Spock side of the equation, where, in an ideal world, rationality and logic should lead one to success. Once these processes are successfully completed, however, the job is still not done.

Every successful deployment still contains within it pockets of resistance. This is the emotional part of technological innovation that oftentimes is either ignored or that managers hope to paper or plow over, usually to their sorrow. It is here that we need to focus our attention. This is the Captain Kirk part of the equation.

The most vulnerable portion of an IT project deployment happens within the initial period of inception. Rolling wave implementations that achieve quick success will often find that there is more resistance over time as each new portion of the organization is brought into the fold. There are many reasons for this.

New personnel may be going by what they observed from the initial embrace of the technology and not like the results. Perhaps buy-in was not obtained by the next group prior to their inclusion, or senior management is not fully on-board. Perhaps there is a perceived or real fear of job loss, or job transformation that was not socialized in advance. It is possible that the implementation focused too heavily on the needs of the initial group of personnel brought under the new technology, which caused the technology to lag in addressing the needs of the next wave. It could also be that the technology is sufficiently different as to represent a “culture shock”, which causes an immediate defensive reaction. If there are outsourced positions, the subcontractor may feel that its interests are threatened by the introduction of the technology. Some SMEs, having created “irreplaceable asset” barriers, may feel that their position would be eroded if they were to have to share expertise and information with other areas of the organization. Lower level employees fear that management will have unfettered access to information prior to vetting. The technology may be oversold as a panacea, rather as a means of addressing organizational or information management deficiencies. All of these reasons, and others, are motivations to explore.

There is an extensive literature on the ways to address the concerns listed above, and others. Good examples can be found here and here.

Adaptive COTS or Business Intelligence technologies, as well as rapid response teams based on Agile, go a long way in addressing and handling barriers to acceptance on the technology side. But additional efforts at socialization and senior management buy-in are essential and will be the difference maker. No amount of argumentation or will persuade people otherwise inclined to defend the status quo, even when benefits are self-evident. Leadership by information consumers–both internal and external–as well as decision-makers will win the day.

Process and Technology – Integrated Project Management and Big(ger) Data

The first wave of automation digitized simple manual efforts (word processing, charts, graphs). This resulted in an incremental increase in productivity but, more importantly, it shifted work so that administrative overhead was eliminated. There are no secretarial pools or positions as there were when I first entered the workforce.

The second and succeeding waves tackled transactional systems based on line and staff organizational structures, and work definitions. Thus, in project management, EVM systems were designed for cost analysts, scheduling apps for planners and schedulers, risk analysis software for systems engineers, and so on.

All of these waves had a focus on functionality of hard-coded software solutions. The software determined what data was important and what information could be processed from it.

The new paradigm shift is a focus on data. We see this through the buzz phrase “Big Data”.  But what does that mean? It means that all of the data that the organization or enterprise collects has information value. Deriving that information value, and then determining its relevance and whether it provides actionable intelligence, is of importance to the organization.

Thus, implementations of data-focused solutions represent not only a shift in the way that work is performed, but also how information is used, and how the health and performance of the organization is assessed. Horizontal information integration across domains provides insights that were not apparent in the past when data was served to satisfy the needs of specialized domains and SMEs. New vulnerabilities and risks are uncovered through integration. This is particularly clear when implementing integrated project management (IPM) solutions.

A pause in providing a definition is in order, especially since IPM is gaining traction, and so large lazy and entrenched incumbents adjust their marketing in the hope of muddying the waters to fit their square peg focused and hard-coded solutions into the round hole of flexible IPM solutions.

Integrated Project Management are the processes and integration of information necessary to derive actionable intelligence from all of the relevant cross-domain information involved in the project organization. This includes cost performance, schedule performance, financial performance and execution, contract implementation, milestone achievement, resource management, and technical performance. Actionable intelligence is that information that is relevant to the project decision-making authority which effectively identifies specific probable qualitative and quantitative risks, risk impact, and risk handling necessary to make project trade-offs, project re-baselining or re-scope, cost-as-an-independent variable (CAIV), or project cancellation decisions. Underlying all of this are feedback loop systems assessments to ensure that there is integrity and fidelity in our business systems–both human and digital.

No doubt, we have a ways to go to get to this condition, but organizations are getting there. What it will take is a change the way leadership views its role, in rewriting traditional project management job descriptions, cross-domain training and mentoring, and in enforcing both for ourselves and in others the dedication to the ethics that are necessary to do the job.

Practice and Ethics in Project Management within Public Administration

The final aspect of implementations of project management systems that is often overlooked, and which oftentimes frames the environment that we are attempting to transform, concerns ethical behavior in project management. It is an aspect of project success as necessary as any performance metric, and it is one for which leadership within an organization sets the tone.

My own expertise in project management has concerned itself in most cases with project management in the field of public administration, though as a businessman I also have experience in the commercial world. Let’s take public administration first since, I think, it is the most straightforward.

When I wore a uniform as a commissioned Naval officer I realized that in my position and duties that I was merely an instrument of the U.S. Navy, and its constitutional and legal underpinnings. My own interests were separate from, and needed to be firewalled from, the execution of my official duties. When I have observed deficiencies in the behavior of others in similar positions, this is the dichotomy that often fails to be inculcated in the individual.

When enlisted personnel salute a commissioned officer they are not saluting the person, they are saluting and showing respect to the rank and position. The officer must earn respect as an individual. Having risen from the enlisted ranks, these were the aspects of leadership that were driven home to me in observing this dynamic: in order to become a good leader, one must first have been a good follower; you must demonstrate trust and respect to earn trust and respect. One must act ethically.

Oftentimes officials in other governmental entities–elected officials (especially), judges, and law enforcement–often fail to understand this point and hence fail this very basic rule of public behavior. The law and their position deserves respect. The behavior and actions of the individuals in their office will determine whether they personally should be shown respect. If an individual abuses their position or the exercise of discretion, they are not worthy of respect, with the danger that they will delegitimize and bring discredit to the office or position.

But earning respect is only one aspect of this understanding in ethical behavior in public administration. It also means that one will make decisions based on the law, ethical principles, and public policy regardless of whether one personally agrees or disagrees with the resulting conclusion of those criteria. That an individual will also apply a similar criteria whether or not the decision will adversely impact their own personal interests or those of associates, friends, or family is also part of weight of ethical behavior.

Finally, in applying the ethical test rule, one must also accept responsibility and accountability in executing one’s duties. This means being diligent, constantly striving for excellence and improvement, leading by example, and to always represent the public interest. Note that ego, personal preference, opinion, or bias, self-interest, or other such concerns have no place in the ethical exercise of public administration.

So what does that mean for project management? The answer goes to the heart of whether one views himself or herself as a project manager or project monitor. In public administration the program manager has a unique set of responsibilities tied to the acquisition of technologies that is rarely replicated in private industry. Oftentimes this involves shepherding a complex effort via contractual agreements that involve large specialized businesses–and often a number of subcontractors–across several years of research and development before a final product is ready for production and deployment.

The primary role in this case is to ensure that the effort is making progress and executing the program toward the goal, ensuring accountability of the funds being expended, which were appropriated for the specific effort by Congress, to ensure that the effort intended by those expenditures through the contractual agreements are in compliance, to identify and handle risks that may manifest to bring the effort into line with the cost, schedule, and technical baselines, all the while staying within the program’s framing assumptions. In addition, the program manager must coordinate with operational managers who are anticipating the deployment of the end item being developed, manage expectations, and determine how best to plan for sustainability once the effort goes to production and deployment. This is, of course, a brief summary of the extensive duties involved.

Meeting these responsibilities requires diligence, information that provides actionable intelligence, and a great deal of subject matter expertise. Finding and handling risks, determining if the baseline is executable, maintaining the integrity of the effort–all require leadership and skill. This is known as project management.

Project monitoring, by contrast, is acceptance of information provided by self-interested parties without verification, of limiting the consumption and processing of essential project performance information, of demurring to any information of a negative nature regarding project performance or risk, of settling for less than an optimal management environment, and using these tactics to, euphemistically, kick the ball down the court to the next project manager in the hope that the impact of negligence falls on someone else’s watch. Project monitoring is unethical behavior in public administration.

Practice and Ethics in Project Management within Private Industry

The focus in private industry is a bit different since self-interest abounds and is rewarded. But there are ethical rules that apply, and which a business person in project management would be well-served to apply.

The responsibility of the executive or officers in a business is to the uphold the interests of the enterprise’s customers, its employees, and its shareholders. Oftentimes business owners will place unequal weighting to these interests, but the best businesses view these responsibilities as being in fine balance.

For example, aside from the legal issues, ethics demands that in making a commitment in providing supplies and services there are a host of obligations that go along with that transaction–honest representation, warranty, and a commitment to provide what was promised. For employees, the commitments made regarding the conditions of employment and to reward employees appropriately for their contribution to the enterprise. For stockholders it is to conduct the business in such as way as to avoid placing its fiduciary position and its ability to act as a going concern in avoidable danger.

For project managers the responsibility within these ethical constraints is to honestly assess and communicate to the enterprise’s officers project performance, whether the effort will achieve the desired qualitative results within budgetary and time constraints, and, from a private industry perspective, handle most of the issues articulated for the project manager in the section on public administration above. The customer is different in this scenario, oftentimes internal, especially when eliminating companies that serve the project management verticals in public administration. Oftentimes the issues and supporting systems are less complex because the scale is, on the whole, smaller.

There are exceptions, of course, to the issue of scaling. Some construction, shipbuilding, and energy projects approach the complexity of some public sector programs. Space X and other efforts are other examples. But the focus there is financial from the perspective of the profit motive–not from the perspective of meeting the goals of some public interest involving health, safety, or welfare, and so the measures of measurement will be different, though the need for accountability and diligence is no less urgent. In may ways such behavior is more urgent given that failure may result in the failure of the entire enterprise.

Yet, the basic issue is the same: are you a project manager or a project monitor? Diligence, leadership, and ethical behavior (which is essential to leadership) are the keys. Project monitoring most often results in failure, and with good reason. It is a failure of both practice and ethics.

Ground Control from Major Tom — Breaking Radio Silence: New Perspectives on Project Management

Since I began this blog I have used it as a means of testing out and sharing ideas about project management, information systems, as well to cover occasional thoughts about music, the arts, and the meaning of wisdom.

My latest hiatus from writing was due to the fact that I was otherwise engaged in a different sort of writing–tech writing–and in exploring some mathematical explorations related to my chosen vocation, aside from running a business and–you know–living life.  There are only so many hours in the day.  Furthermore, when one writes over time about any one topic it seems that one tends to repeat oneself.  I needed to break that cycle so that I could concentrate on bringing something new to the table.  After all, it is not as if this blog attracts a massive audience–and purposely so.  The topics on which I write are highly specialized and the members of the community that tend to follow this blog and send comments tend to be specialized as well.  I air out thoughts here that are sometimes only vaguely conceived so that they can be further refined.

Now that that is out of the way, radio silence is ending until, well, the next contemplation or massive workload that turns into radio silence.

Over the past couple of months I’ve done quite a bit of traveling, and so have some new perspectives that and trends that I noted and would like to share, and which will be the basis (in all likelihood) of future, more in depth posts.  But here is a list that I have compiled:

a.  The time of niche analytical “tools” as acceptable solutions among forward-leaning businesses and enterprises is quickly drawing to a close.  Instead, more comprehensive solutions that integrate data across domains are taking the market and disrupting even large players that have not adapted to this new reality.  The economics are too strong to stay with the status quo.  In the past the barrier to integration of more diverse and larger sets of data was the high cost of traditional BI with its armies of data engineers and analysts providing marginal value that did not always square with the cost.  Now virtually any data can be accessed and visualized.  The best solutions, providing pre-built domain knowledge for targeted verticals, are the best and will lead and win the day.

b.  Along these same lines, apps and services designed around the bureaucratic end-of-month chart submission process are running into the new paradigm among project management leaders that this cycle is inadequate, inefficient, and ineffective.  The incentives are changing to reward actual project management in lieu of project administration.  The core fallacy of apps that provide standard charts based solely on user’s perceptions of looking at data is that they assume that the PM domain knows what it needs to see.  The new paradigm is instead to provide a range of options based on the knowledge that can be derived from data.  Thus, while the options in the new solutions provide the standard charts and reports that have always informed management, KDD (knowledge discovery in database) principles are opening up new perspectives in understanding project dynamics and behavior.

c.  Earned value is *not* the nexus of Integrated Project Management (IPM).  I’m sure many of my colleagues in the community will find this statement to be provocative, only because it is what they are thinking but have been hesitant to voice.  A big part of their hesitation is that the methodology is always under attack by those who wish to avoid accountability for program performance.  Thus, let me make a point about Earned Value Management (EVM) for clarity–it is an essential methodology in assessing project performance and the probability of meeting the constraints of the project budget.  It also contributes data essential to project predictive analytics.  What the data shows from a series of DoD studies (currently sadly unpublished), however, is that it is planning (via a Integrated Master Plan) and scheduling (via an Integrated Master Schedule) that first ties together the essential elements of the project, and will record the baking in of risk within the project.  Risk manifested in poorly tying contract requirements, technical performance measures, and milestones to the plan, and then manifested in poor execution will first be recorded in schedule (time-based) performance.  This is especially true for firms that apply resource-loading in their schedules.  By the time this risk translates and is recorded in EVM metrics, the project management team is performing risk handling and mitigation to blunt the impact on the performance management baseline (the money).  So this still raises the question: what is IPM?  I have a few ideas and will share those in other posts.

d.  Along these lines, there is a need for a Schedule (IMS) Gold Card that provides the essential basis of measurement of programmatic risk during project execution.  I am currently constructing one with collaboration and will put out a few ideas.

e.  Finally, there is still room for a lot of improvement in project management.  For all of the gurus, methodologies, consultants, body shops, and tools that are out there, according to PMI, more than a third of projects fail to meet project goals, almost half to meet budget expectations, less than half finished on time, and almost half experienced scope creep, which, I suspect, probably caused “failure” to be redefined and under-reported in their figures.  The assessment for IT projects is also consistent with this report, with CIO.com reporting that more than half of IT projects fail in terms of meeting performance, cost, and schedule goals.  From my own experience and those of my colleagues, the need to solve the standard 20-30% slippage in schedule and similar overrun in costs is an old refrain.  So too is the frustration that it need take 23 years to deploy a new aircraft.  A .5 CPI and SPI (to use EVM terminology) is not an indicator of success.  What this indicates, instead, is that there need to be some adjustments and improvements in how we do business.  The first would be to adjust incentives to encourage and reward the identification of risk in project performance.  The second is to deploy solutions that effectively access and provide information to the project team that enable them to address risk.  As with all of the points noted in this post, I have some other ideas in this area that I will share in future posts.

Onward and upward.