Money for Nothing — Project Performance Data and Efficiencies in Timeliness

I operate in a well regulated industry focused on project management. What this means practically is that there are data streams that flow from the R&D activities, recording planning and progress, via control and analytical systems to both management and customer. The contract type in most cases is Cost Plus, with cost and schedule risk often flowing to the customer in the form of cost overruns and schedule slippages.

Among the methodologies used to determine progress and project eventual outcomes is earned value management (EVM). Of course, this is not the only type of data that flows in performance management streams, but oftentimes EVM is used as shorthand to describe all of the data captured and submitted to customers in performance management. Other planning and performance management data includes time-phased scheduling of tasks and activities, cost and schedule risk assessments, and technical performance.

Previously in my critique regarding the differences between project monitoring and project management (before Hurricane Irma created some minor rearranging of my priorities), I pointed out that “looking in the rear view mirror” was often used as an excuse for by-passing unwelcome business intelligence. I followed this up with an intro to the synergistic economics of properly integrated data. In the first case I answered the critique demonstrating that it is based on an old concept that no longer applies. In the second case I surveyed the economics of data that drives efficiencies. In both cases, new technology is key to understanding the art of the possible.

As I have visited sites in both government and private industry, I find that old ways of doing things still persist. The reason for this is multivariate. First, technology is developing so quickly that there is fear that one’s job will be eliminated with the introduction of technology. Second, the methodology of change agents in introducing new technology often lacks proper socialization across the various centers of power that inevitably exist in any organization. Third, the proper foundation to clearly articulate the need for change is not made. This last is particularly important when stakeholders perform a non-rational assessment in their minds of cost-benefit. They see many downsides and cannot accept the benefits, even when they are obvious. For more on this and insight into other socioeconomic phenomena I strongly recommend Daniel Kahneman’s Thinking Fast and Slow. There are other reasons as well, but these are the ones that are most obvious when I speak with individuals in the field.

The Past is Prologue

For now I will restrict myself to the one benefit of new technology that addresses the “looking in the rear window” critique. It is important to do so because the critique is correct in application (for purposes that I will outline) if incorrect in its cause-and-effect. It is also important to focus on it because the critique is so ubiquitous.

As I indicated above, there are many sources of data in project management. They derive from the following systems (in brief):

a. The planning and scheduling applications, which measure performance through time in the form of discrete activities and events. In the most sophisticated implementations, these applications will include the assignment of resources, which requires the integration of these systems with resource management. Sometimes simple costs are also assigned and tracked through time as well.

b. The cost performance (earned value) applications, which ideally are aligned with the planning and scheduling applications, providing cross-integration with WBS and OBS structures, but focused on work accomplishment defined by the value of work completed against a baseline plan. These performance figures are tied to work accomplishment through expended effort collected by and, ideally, integrated with the financial management system. It involves the proper application of labor rates and resource expenditures in the accomplishment of the work to not only provide an statistical assessment of performance to date, but a projection of likely cost performance outcomes at completion of the effort.

c. Risk assessment applications which, depending of their sophistication and ease of use, provide analysis of possible cost and schedule outcomes, identify the sensitivity of particular activities and tasks, provide an assessment of alternative driving and critical paths, and apply different models of baseline performance to predict future outcomes.

d. Systems engineering applications that provide an assessment of technical performance to date and the likely achievement of technical parameters within the scope of the effort.

e. The financial management applications that provide an accounting of funds allocation, cash-flow, and expenditure, including planning information regarding expenditures under contract and planned expenditures in the future.

These are the core systems of record upon which performance information is derived. There are others as well, depending on the maturity of the project such as ERP systems and MRP systems. But for purposes of this post, we will bound the discussion to these standard sources of data.

In the near past, our ability to understand the significance of the data derived from these systems required manual processing. I am not referring to the sophistication of human computers of 1960s and before, dramatized to great effect in the uplifting movie Hidden Figures. Since we are dealing with business systems, these methodologies were based on simple business metrics and other statistical methods, including those that extended the concept of earned value management.

With the introduction of PCs in the workplace in the 1980s, desktop spreadsheet applications allowed this data to be entered, usually from printed reports. Each analyst not only used standard methods common in the discipline, but also developed their own methods to process and derive importance from the data, transforming it into information and useful intelligence.

Shortly after this development simple analytical applications were introduced to the market that allowed for pairing back the amount of data deriving from some of these systems and performing basic standard calculations, rendering redundant calculations unnecessary. Thus, for example, instead of a person having to calculate multiple estimates to complete, the application could perform those calculations as part of its functionality and deliver them to the analyst for use in, hopefully, their own more extensive assessments.

But even in this case, the data flow was limited to the EVM silo. The data streams relating to schedule, risk, SE, and FM were left to their own devices, oftentimes requiring manual methods or, in the best of cases, cut-and-paste, to incorporate data from reports derived from these systems. In the most extreme cases, for project oversight organizations, this caused analysts to acquire a multiplicity of individual applications (with the concomitant overhead and complexity of understanding differing lexicons and software application idiosyncrasies) in order to read proprietary data types from the various sources just to perform simple assessments of the data before even considering integrating it properly into the context of all of the other project performance data that was being collected.

The bottom line of outlining these processes is to note that, given a combination of manual and basic automated tools, that putting together and reporting on this data takes time, and time, as Mr. Benjamin Franklin noted, is money.

By itself the critique that “looking in the rear view mirror” has no value and attributing it to one particular type of information (EVM) is specious. After all, one must know where one has been and presently is before you can figure out where you need to go and how to get there and EVM is just one dimension of a multidimensional space.

But there is a utility value associated with the timing and locality of intelligence and that is the issue.

Contributors to time

Time when expended to produce something is a form of entropy. For purposes of this discussion at this level of existence, I am defining entropy as availability of the energy in a system to do work. The work in this case is the processing and transformation of data into information, and the further transformation of information into usable intelligence.

There are different levels and sub-levels when evaluating the data stream related to project management. These are:

a. Within the supplier/developer/manufacturer

(1) First tier personnel such as Control Account Managers, Schedulers (if separate), Systems Engineers, Financial Managers, and Procurement personnel among other actually recording and verifying the work accomplishment;

(2) Second tier personnel that includes various levels of management, either across teams or in typical line-and-staff organizations.

b. Within customer and oversight organizations

(1) Reporting and oversight personnel tasks with evaluating the fidelity of specific business systems;

(2) Counterpart project or program officer personnel tasked with evaluating progress, risk, and any factors related to scope execution;

(3) Staff organizations designed to supplement and organize the individual project teams, providing a portfolio perspective to project management issues that may be affected by other factors outside of the individual project ecosystem;

(4) Senior management at various levels of the organization.

Given the multiplicity of data streams it appears that the issue of economies is vast until it is understood that the data that underlies the consumers of the information is highly structured and specific to each of the domains and sub-domains. Thus there are several opportunities for economies.

For example, cost performance and scheduling data have a direct correlation and are closely tied. Thus, these separate streams in the A&D industry were combined under a common schema, first using the UN/CEFACT XML, and now transitioning to a more streamlined JSON schema. Financial management has gone through a similar transition. Risk and SE data are partially incorporated into project performance schemas, but the data is also highly structured and possesses commonalities to be directly accessed using technologies that effectively leverage APIs.

Back to the Future

The current state, despite advances in the data formats that allow for easy rationalization and normalization of data that breaks through propriety barriers, still largely is based a slightly modified model of using a combination of manual processing augmented by domain-specific analytical tools. (Actually sub-domain analytical tools that support sub-optimization of data that are a barrier to incorporation of cross-domain integration necessary to create credible project intelligence).

Thus, it is not unusual at the customer level to see project teams still accepting a combination of proprietary files, hard copy reports, and standard schema reports. Usually the data in these sources is manually entered into Excel spreadsheets or a combination of Excel and some domain-specific analytical tool (and oftentimes several sub-specialty analytical tools). After processing, the data is oftentimes exported or built in PowerPoint in the form of graphs or standard reporting formats. This is information management by Excel and PowerPoint.

In sum, in all too many cases the project management domain, in terms of data and business intelligence, continues to party like it is 1995. This condition also fosters and reinforces insular organizational domains, as if the project team is disconnected from and can possess goals antithetical and/or in opposition to the efficient operation of the larger organization.

A typical timeline goes like this:

a. Supplier provides project performance data 15-30 days after the close of a period. (Some contract clauses give more time). Let’s say the period closed at the end of July. We are now effectively in late August or early September.

b. Analysts incorporate stove-piped domain data into their Excel spreadsheets and other systems another week or so after submittal.

c. Analysts complete processing and analyzing data and submit in standard reporting formats (Excel and PowerPoint) for program review four to six weeks after incorporation of the data.

Items a through c now put a typical project office at project review for July information at the end of September or beginning of October. Furthermore, this information is focused on individual domains, and given the lack of cross-domain knowledge, can be contradictory.

This system is broken.

Even suppliers who have direct access to systems of record all too often rely on domain-specific solutions to be able to derive significance from the processing of project management data. The larger suppliers seem to have recognized this problem and have been moving to address it, requiring greater integration across solutions. But the existence of a 15-30 day reconciliation period after the end of a period, and formalized in contract clauses, is indicative of an opportunity for greater efficiency in that process as well.

The Way Forward

But there is another way.

The opportunities for economy in the form of improvements in time and effort are in the following areas, given the application of the right technology:

  1. In the submission of data, especially by finding data commonalities and combining previously separate domain data streams to satisfy multiple customers;
  2. In retrieving all data so that it is easily accessible to the organization at the level of detailed required by the task at hand;
  3. In processing this data so that it can converted by the analyst into usable intelligence;
  4. In properly accessing, displaying, and reporting properly integrated data across domains, as appropriate, to each level of the organization regardless of originating data stream.

Furthermore, there opportunities to realizing business value by improving these processes:

  1. By extending expertise beyond a limited number of people who tend to monopolize innovations;
  2. By improving organizational knowledge by incorporating innovation into the common system;
  3. By gaining greater insight into more reliable predictors of project performance across domains instead of the “traditional” domain-specific indices that have marginal utility;
  4. By developing a project focused organization that breaks down domain-centric thinking;
  5. By developing a culture that ties cross-domain project knowledge to larger picture metrics that will determine the health of the overarching organization.

It is interesting that when I visit the field how often it is asserted that “the technology doesn’t matter, it’s process that matters”.

Wrong. Technology defines the art of the possible. There is no doubt that in an ideal world we would optimize our systems prior to the introduction of new technology. But that assumes that the most effective organization (MEO) is achievable without technological improvements to drive the change. If one cannot efficiently integrate all submitted cross-domain information effectively and efficiently using Excel in any scenario (after all, it’s a lot of data), then the key is the introduction of new technology that can do that very thing.

So what technologies will achieve efficiency in the use of this data? Let’s go through the usual suspects:

a. Will more effective use of PowerPoint reduce these timelines? No.

b. Will a more robust set of Excel workbooks reduce these timelines? No.

c. Will an updated form of a domain-specific analytical tool reduce these timelines? No.

d. Will a NoSQL solution reduce these timelines? Yes, given that we can afford the customization.

e. Will a COTS BI application that accepts a combination of common schemas and APIs reduce these timelines? Yes.

The technological solution must be fitted to its purpose and time. Technology matters because we cannot avoid the expenditure of time or energy (entropy) in the processing of information. We can perform these operations using a large amount of energy in the form of time and effort, or we can conserve time and effort by substituting the power of computing and information processing. While we will never get to the point where we completely eliminate entropy, our application of appropriate technology makes it seem as if effort in the form of time is significantly reduced. It’s not quite money for nothing, but it’s as close as we can come and is an obvious area of improvement that can be made for a relatively small investment.

Synergy — The Economics of Integrated Project Management

The hot topic lately in meetings and the odd conference on Integrated Project Management (IPM) often focuses on the mechanics of achieving that state, bound by the implied definition of current regulation, which has also become–not surprisingly–practice. I think this is a laudable goal, particularly given both the casual resistance to change (which always there by definition to some extent) and in the most extreme cases a kind of apathy.

I addressed the latter condition in my last post by an appeal to professionalism, particularly on the part of those in public administration. But there is a more elemental issue here than the concerns of project analysts, systems engineers, and the associated information managers. While this level of expertise is essential in the development of innovation, relying too heavily on this level in the organization creates an internal organizational conflict that creates the risk that the innovation is transient and rests on a slender thread. Association with any one manager also leaves innovation vulnerable due to the “not invented here” tact taken by many new managers in viewing the initiatives of a predecessor. In business this (usually self-defeating) approach becomes more extreme the higher one goes in the chain of command (the recent Sears business model anyone?).

The key, of course, is to engage senior managers and project/program managers in participating in the development of this important part of business intelligence. A few suggestions on how to do this follow, but the bottom line is this: money and economics makes the implementation of IPM an essential component of business intelligence.

Data, Information, and Intelligence – Analysis vs. Reporting

Many years ago using manual techniques, I was employed in activities that required that I seek and document data from disparate sources, seemingly unconnected, and find the appropriate connections. The initial connection was made with a key. It could be a key word, topic, individual, technology, or government. The key, however, wasn’t the end of the process. The validity of the relationship needed to be verified as more than mere coincidence. This is a process well known in the community specializing in such processes, and two good sources to understand how this was done can be found here and here.

It is a well trod path to distinguish between the elements that eventually make up intelligence so I will not abuse the reader in going over it. Needless to say that a bit of data is the smallest element of the process, with information following. For project management what is often (mis)tagged as predictive analytics and analysis is really merely information. Thus, when project managers and decision makers look at the various charts and graphs employed by their analysts they are usually greeted with a collective yawn. Raw projections of cost variance, cost to complete, schedule variance, schedule slippage, baseline execution, Monte Carlo risk, etc. are all building blocks to employing business intelligence. But in and of themselves they are not intelligence because these indicators require analysis, weighting, logic testing, and, in the end, an assessment that is directly tied to the purpose of the organization.

The role and application of digitization is to make what was labor intensive less so. In most cases this allows us to apply digital technology to its strength–calculation and processing of large amounts of data to create information. Furthermore, digitization now allows for effective lateral integration among datasets given a common key, even if there are multiple keys that act in a chain from dataset to dataset.

At the end of the line what we are left with is a strong correlation of data integrated across a number of domains that contribute to a picture of how an effort is performing. Still, even given the most powerful heuristics, a person–the consumer–must validate the data to determine if the results possess validity and fidelity. For project management this process is not as challenging as, say, someone using raw social networking data. Project management data, since it is derived from underlying systems that through their processing mimic highly structured processes and procedures, tends to be “small”, even when it can be considered Big Data form the shear perspective of size. It is small Big Data.

Once data has been accumulated, however, it must be assessed so as to ensure that the parts cohere. This is done by assessing the significance and materiality of those parts. Once this is accomplished the overall assessment must then be constructed so that it follows logically from the data. That is what constitutes “actionable intelligence”: analysis of present condition, projected probable outcomes, recommended actions with alternatives. The elements of this analysis–charts, graphs, etc., are essential in reporting, but reporting these indices is not the purpose of the process. The added value of an analyst lies in the expertise one possesses. Without this dimension a machine could do the work. The takeaway from this point, however, isn’t to substitute the work with software. It is to develop analytical expertise.

What is Integrated Project Management?

In my last post I summed up what IPM is, but some elaboration and refinement is necessary.

I propose that Integrated Project Management is defined as that information necessary to derive actionable intelligence from all of the relevant cross-domain information involved in the project organization. This includes cost performance, schedule performance, financial performance and execution, contract implementation, milestone achievement, resource management, and technical performance. Actionable intelligence in this context, as indicated above, is that information that is relevant to the project decision-making authority which effectively identifies specific probable qualitative and quantitative risks, risk impact, and risk handling necessary to make project trade-offs, project re-baselining or re-scope, cost-as-an-independent variable (CAIV), or project cancellation decisions. Underlying all of this are feedback loop systems assessments to ensure that there is integrity and fidelity in our business systems–both human and digital.

The data upon which IPM is derived comes from a finite number of sources. Thus, project management data lends itself to solutions that break down proprietary syntax and terminology. This is really the key to achieving IPM and one that has garnered some discussion when discussing the process of data normalization and rationalization with other IT professionals. The path can be a long one: using APIs to perform data-mining directly against existing tables or against a data repository (or warehouse or lake), or pre-normalizing the data in a schema (given both the finite nature of the data and the finite–and structured–elements of the processes being documented in data).

Achieving normalization and rationalization in this case is not a notional discussion–in my vocation I provide solutions that achieve this goal. In order to do so one must expand their notion of the architecture of the appropriate software solution. The mindset of “tools” is at the core of what tends to hold back progress in integration, that is, the concept of a “tool” is one that is really based on an archaic approach to computing. It assumes that a particular piece of software must limit itself to performing limited operations focused on a particular domain. In business this is known as sub-optimization.

Oftentimes this view is supported by the organization itself where the project management team is widely dispersed and domains hoard information. The rice bowl mentality has long been a bane of organizational effectiveness. Organizations have long attempted to break through these barriers using various techniques: cross-domain teams, integrated product teams, and others.

No doubt some operations of a business must be firewalled in such a way. The financial management of the enterprise comes to mind. But when it comes to business operations, the tools and rice bowl mindset is a self-limiting one. This is why many in IT push the concept of a solution–and the analogue is this: a tool can perform a particular operation (turn a screw, hammer a nail, crimp a wire, etc.); a solution achieves a goal of the system that consists of a series of operations, which are often complex (build the wall, install the wiring, etc.). Software can be a tool or a solution. Software built as a solution contains the elements of many tools.

Given a solution that supports IPM, a pathway is put in place that facilitates breaking down the barriers that currently block effective communication between and within project teams.

The necessity of IPM

An oft-cited aphorism in business is that purpose drives profit. For those in public administration purpose drives success. What this means is that in order to become successful in any endeavor that the organization must define itself. It is the nature of the project–a planned set of interrelated tasks separately organized and financed from the larger enterprise, which is given a finite time and budget specifically to achieve a goal of research, development, production, or end state–that defines an organization’s purpose: building aircraft, dams, ships, software, roads, bridges, etc.

A small business is not so different from a project organization in a larger enterprise. Small events can have oversized effects. What this means in very real terms is that the core rules of economics will come to bear with great weight on the activities of project management. In the world in which we operate, the economics underlying both enterprises and projects punishes inefficiency. Software “tools” that support sub-optimization are inefficient and the organizations that employ them bear unnecessary risk.

The information and technology sectors have changed what is considered to be inefficient in terms of economics. At its core, information has changed the way we view and leverage information. Back in 1997 economists Brad DeLong and Michael Froomkin identified the nature of information and its impact on economics. Their concepts and observations have had incredible staying power if, for no other reason, because what they predicted has come to pass. The economic elements of excludability, rivalry, transparency have transformed how the enterprise achieves optimization.

An enterprise that is willfully ignorant of its condition is one that is at risk. Given that many projects will determine the success of the enterprise, a project that is willfully ignorant of its condition threatens the financial health and purpose of the larger organization. Businesses and public sector agencies can no longer afford not to have cohesive and actionable intelligence built on all of the elements that contribute to determining that condition. In this way IPM becomes not only essential but its deployment necessary.

In the end the reason for doing this comes down to profit on the one hand, and success on the other. Given the increasing transparency of information and the continued existence of rivalry, the trend in the economy will be to reward those that harness the potentials for information integration that have real consequences in the management of the enterprise, and to punish those who do not.

Ground Control from Major Tom — Breaking Radio Silence: New Perspectives on Project Management

Since I began this blog I have used it as a means of testing out and sharing ideas about project management, information systems, as well to cover occasional thoughts about music, the arts, and the meaning of wisdom.

My latest hiatus from writing was due to the fact that I was otherwise engaged in a different sort of writing–tech writing–and in exploring some mathematical explorations related to my chosen vocation, aside from running a business and–you know–living life.  There are only so many hours in the day.  Furthermore, when one writes over time about any one topic it seems that one tends to repeat oneself.  I needed to break that cycle so that I could concentrate on bringing something new to the table.  After all, it is not as if this blog attracts a massive audience–and purposely so.  The topics on which I write are highly specialized and the members of the community that tend to follow this blog and send comments tend to be specialized as well.  I air out thoughts here that are sometimes only vaguely conceived so that they can be further refined.

Now that that is out of the way, radio silence is ending until, well, the next contemplation or massive workload that turns into radio silence.

Over the past couple of months I’ve done quite a bit of traveling, and so have some new perspectives that and trends that I noted and would like to share, and which will be the basis (in all likelihood) of future, more in depth posts.  But here is a list that I have compiled:

a.  The time of niche analytical “tools” as acceptable solutions among forward-leaning businesses and enterprises is quickly drawing to a close.  Instead, more comprehensive solutions that integrate data across domains are taking the market and disrupting even large players that have not adapted to this new reality.  The economics are too strong to stay with the status quo.  In the past the barrier to integration of more diverse and larger sets of data was the high cost of traditional BI with its armies of data engineers and analysts providing marginal value that did not always square with the cost.  Now virtually any data can be accessed and visualized.  The best solutions, providing pre-built domain knowledge for targeted verticals, are the best and will lead and win the day.

b.  Along these same lines, apps and services designed around the bureaucratic end-of-month chart submission process are running into the new paradigm among project management leaders that this cycle is inadequate, inefficient, and ineffective.  The incentives are changing to reward actual project management in lieu of project administration.  The core fallacy of apps that provide standard charts based solely on user’s perceptions of looking at data is that they assume that the PM domain knows what it needs to see.  The new paradigm is instead to provide a range of options based on the knowledge that can be derived from data.  Thus, while the options in the new solutions provide the standard charts and reports that have always informed management, KDD (knowledge discovery in database) principles are opening up new perspectives in understanding project dynamics and behavior.

c.  Earned value is *not* the nexus of Integrated Project Management (IPM).  I’m sure many of my colleagues in the community will find this statement to be provocative, only because it is what they are thinking but have been hesitant to voice.  A big part of their hesitation is that the methodology is always under attack by those who wish to avoid accountability for program performance.  Thus, let me make a point about Earned Value Management (EVM) for clarity–it is an essential methodology in assessing project performance and the probability of meeting the constraints of the project budget.  It also contributes data essential to project predictive analytics.  What the data shows from a series of DoD studies (currently sadly unpublished), however, is that it is planning (via a Integrated Master Plan) and scheduling (via an Integrated Master Schedule) that first ties together the essential elements of the project, and will record the baking in of risk within the project.  Risk manifested in poorly tying contract requirements, technical performance measures, and milestones to the plan, and then manifested in poor execution will first be recorded in schedule (time-based) performance.  This is especially true for firms that apply resource-loading in their schedules.  By the time this risk translates and is recorded in EVM metrics, the project management team is performing risk handling and mitigation to blunt the impact on the performance management baseline (the money).  So this still raises the question: what is IPM?  I have a few ideas and will share those in other posts.

d.  Along these lines, there is a need for a Schedule (IMS) Gold Card that provides the essential basis of measurement of programmatic risk during project execution.  I am currently constructing one with collaboration and will put out a few ideas.

e.  Finally, there is still room for a lot of improvement in project management.  For all of the gurus, methodologies, consultants, body shops, and tools that are out there, according to PMI, more than a third of projects fail to meet project goals, almost half to meet budget expectations, less than half finished on time, and almost half experienced scope creep, which, I suspect, probably caused “failure” to be redefined and under-reported in their figures.  The assessment for IT projects is also consistent with this report, with CIO.com reporting that more than half of IT projects fail in terms of meeting performance, cost, and schedule goals.  From my own experience and those of my colleagues, the need to solve the standard 20-30% slippage in schedule and similar overrun in costs is an old refrain.  So too is the frustration that it need take 23 years to deploy a new aircraft.  A .5 CPI and SPI (to use EVM terminology) is not an indicator of success.  What this indicates, instead, is that there need to be some adjustments and improvements in how we do business.  The first would be to adjust incentives to encourage and reward the identification of risk in project performance.  The second is to deploy solutions that effectively access and provide information to the project team that enable them to address risk.  As with all of the points noted in this post, I have some other ideas in this area that I will share in future posts.

Onward and upward.

Rear View Mirror — Correcting a Project Management Fallacy

“The past is never dead. It’s not even past.” —  William Faulkner, Requiem for a Nun

Over the years I and others have briefed project managers on project performance using KPPs, earned value management, schedule analysis, business analytics, and what we now call predictive analytics. Oftentimes, some set of figures will be critiqued as being ineffective or unhelpful; that the analytics “only look in the rear view mirror” and that they “tell me what I already know.”

In approaching this critique, it is useful to understand Faulkner’s oft-cited quote above.  When we walk down a street, let us say it is a busy city street in any community of good size, we are walking in the past.  The moment we experience something it is in the past.  If we note the present condition of our city street we will see that for every building, park, sidewalk, and individual that we pass on that sidewalk, each has a history.  These structures and the people are as much driven by their pasts as their expectations for the future.

Now let us take a snapshot of our street.  In doing so we can determine population density, ethnic demographics, property values, crime rate, and numerous other indices and parameters regarding what is there.  No doubt, if we stop here we are just “looking in the rear view mirror” and noting what we may or may not know, however certain our anecdotal filter.

Now, let us say that we have an affinity for this street and may want to live there.  We will take the present indices and parameters that noted above, which describe our geographical environment, and trend it.  We may find that housing pricing are rising or falling, that crime is rising or falling, etc.  If we delve into the street’s ownership history we may find that one individual or family possesses more than one structure, or that there is a great deal of diversity.  We may find that a Superfund site is not too far away.  We may find that economic demographics are pointing to stagnation of the local economy, or that the neighborhood is becoming gentrified.  Just by time-phasing and delving into history–by mapping out the trends and noting the significant historical background–provides us with enough information to inform us about whether our affinity is grounded in reality or practicality.

But let us say that, despite negatives, we feel that this is the next up-and-coming neighborhood.  We would need signs to make that determination.  For example, what kinds of businesses have moved into the neighborhood and what is their number?  What demographic do they target?  There are many other questions that can be asked to see if our economic analysis is valid–and that analysis would need to be informed by risk.

The fact of the matter is that we are always living with the past: the cumulative effect of the past actions of numerous individuals, including our own, and organizations, groups of individuals, and institutions; not to mention larger economic forces well beyond our control.  Any desired change in the trajectory of the system being evaluated must identify those elements that can be impacted or influenced, and an analysis of the effort that must be expended to bring about the change, is also essential.

This is a scientific fact, proven countless times by physics, biology, and other disciplines.  A deterministic universe, which provides for some uncertainty at any given point at our level of existence, drives the possible within very small limits of possibility and even smaller limits of probability.  What this means in plain language is that the future is usually a function of the past.

Any one number or index, no doubt, does not necessarily tell us something important.  But it could if it is relevant, material, and prompts further inquiry essential to project performance.

For example, let us look at an integrated master schedule that underlies a typical medium-sized project.

 

We will select a couple of metrics that indicates project schedule performance.  In the case below we are looking at task hits and misses and Baseline Execution Index, a popular index that determines efficiency in meeting baseline schedule planning.

Note that the chart above plots the performance over time.  What will it take to improve our efficiency?  So as a quick logic check on realism, let’s take a look at the work to date with all of the late starts and finishes.

Our bow waves track the cumulative effort to date.  As we work to clear missed starts or missed finishes in a project we also must devote resources to the accomplishment of current work that is still in line with the baseline.  What this means is that additional resources may need to be devoted to particular areas of work accomplishment or risk handling.

This is not, of course, the limit to our analysis that should be undertaken.  The point here is that at every point in history in every system we stand at a point of the cumulative efforts, risk, failure, success, and actions of everyone who came before us.  At the microeconomic level this is also true within our project management systems.  There are also external constraints and influences that will define the framing assumptions and range of possibilities and probabilities involved in project outcomes.

The shear magnitude of the bow waves that we face in all endeavors will often be too great to fully overcome.  As an analogy, a bow wave in complex systems is more akin to a tsunami as opposed to the tidal waves that crash along our shores.  All of the force of all of the collective actions that have preceded present time will drive our trajectory.

This is known as inertia.

Identifying and understanding the contributors to the inertia that is driving our performance is important to knowing what to do.  Thus, looking in the rear view mirror is important and not a valid argument for ignoring an inconvenient metric that may only require additional context.  Furthermore, knowing where we sit is important and not insignificant.  Knowing the factors that put us where we are–and the effort that it will take to influence our destiny–will guide what is possible and not possible in our future actions.

Note:  All charted data is notional and is not from an actual project.

Something New (Again)– Top Project Management Trends 2017

Atif Qureshi at Tasque, which I learned via Dave Gordon’s blog, went out to LinkedIn’s Project Management Community to ask for the latest tends in project management.  You can find the raw responses to his inquiry at his blog here.  What is interesting is that some of these latest trends are much like the old trends which, given continuity makes sense.  But it is instructive to summarize the ones that came up most often.  Note that while Mr. Qureshi was looking for ten trends, and taken together he definitely lists more than ten, there is a lot of overlap.  In total the major issues seem to the five areas listed below.

a.  Agile, its hybrids, and its practical application.

It should not surprise anyone that the latest buzzword is Agile.  But what exactly is it in its present incarnation?  There is a great deal of rising criticism, much of it valid, that it is a way for developers and software PMs to avoid accountability. Anyone ready Glen Alleman’s Herding Cat’s Blog is aware of the issues regarding #NoEstimates advocates.  As a result, there are a number hybrid implementations of Agile that has Agile purists howling and non-purists adapting as they always do.  From my observations, however, there is an Ur-Agile that is out there common to all good implementations and wrote about them previously in this blog back in 2015.  Given the time, I think it useful to repeat it here.

The best articulation of Agile that I have read recently comes from Neil Killick, whom I have expressed some disagreement on the #NoEstimates debate and the more cultish aspects of Agile in past posts, but who published an excellent post back in July (2015) entitled “12 questions to find out: Are you doing Agile Software Development?”

Here are Neil’s questions:

  1. Do you want to do Agile Software Development? Yes – go to 2. No – GOODBYE.
  2. Is your team regularly reflecting on how to improve? Yes – go to 3. No – regularly meet with your team to reflect on how to improve, go to 2.
  3. Can you deliver shippable software frequently, at least every 2 weeks? Yes – go to 4. No – remove impediments to delivering a shippable increment every 2 weeks, go to 3.
  4. Do you work daily with your customer? Yes – go to 5. No – start working daily with your customer, go to 4.
  5. Do you consistently satisfy your customer? Yes – go to 6. No – find out why your customer isn’t happy, fix it, go to 5.
  6. Do you feel motivated? Yes – go to 7. No – work for someone who trusts and supports you, go to 2.
  7. Do you talk with your team and stakeholders every day? Yes – go to 8. No – start talking with your team and stakeholders every day, go to 7.
  8. Do you primarily measure progress with working software? Yes – go to 9. No – start measuring progress with working software, go to 8.
  9. Can you maintain pace of development indefinitely? Yes – go to 10. No – take on fewer things in next iteration, go to 9.
  10. Are you paying continuous attention to technical excellence and good design? Yes – go to 11. No – start paying continuous attention to technical excellent and good design, go to 10.
  11. Are you keeping things simple and maximising the amount of work not done? Yes – go to 12. No – start keeping things simple and writing as little code as possible to satisfy the customer, go to 11.
  12. Is your team self-organising? Yes – YOU’RE DOING AGILE SOFTWARE DEVELOPMENT!! No – don’t assign tasks to people and let the team figure out together how best to satisfy the customer, go to 12.

Note that even in software development based on Agile you are still “provid(ing) value by independently developing IP based on customer requirements.”  Only you are doing it faster and more effectively.

With the possible exception of the “self-organizing” meme, I find that items through 11 are valid ways of identifying Agile.  Given that the list says nothing about establishing closed-loop analysis of progress says nothing about estimates or the need to monitor progress, especially on complex projects.  As a matter of fact one of the biggest impediments noted elsewhere in industry is the inability of Agile to scale.  This limitations exists in its most simplistic form because Agile is fine in the development of well-defined limited COTS applications and smartphone applications.  It doesn’t work so well when one is pushing technology while developing software, especially for a complex project involving hundreds of stakeholders.  One other note–the unmentioned emphasis in Agile is technical performance measurement, since progress is based on satisfying customer requirements.  TPM, when placed in the context of a world of limited resources, is the best measure of all.

b.  The integration of new technology into PM and how to upload the existing PM corporate knowledge into that technology.

This is two sides of the same coin.  There is always  debate about the introduction of new technologies within an organization and this debate places in stark contrast the differences between risk aversion and risk management.

Project managers, especially in the complex project management environment of aerospace & defense tend, in general, to be a hardy lot.  Consisting mostly of engineers they love to push the envelope on technology development.  But there is also a stripe of engineers among them that do not apply this same approach of measured risk to their project management and business analysis system.  When it comes to tracking progress, resource management, programmatic risk, and accountability they frequently enter the risk aversion mode–believing that the less eyes on what they do the more leeway they have in achieving the technical milestones.  No doubt this is true in a world of unlimited time and resources, but that is not the world in which we live.

Aside from sub-optimized self-interest, the seeds of risk aversion come from the fact that many of the disciplines developed around performance management originated in the financial management community, and many organizations still come at project management efforts from perspective of the CFO organization.  Such rice bowl mentality, however, works against both the project and the organization.

Much has been made of the wall of honor for those CIA officers that have given their lives for their country, which lies to the right of the Langley headquarters entrance.  What has not gotten as much publicity is the verse inscribed on the wall to the left:

“And ye shall know the truth and the truth shall make you free.”

      John VIII-XXXII

In many ways those of us in the project management community apply this creed to the best of our ability to our day-to-day jobs, and it lies as the basis for all of the management improvement from Deming’s concept of continuous process improvement, through the application of Six Sigma and other management improvement methods.  What is not part of this concept is that one will apply improvement only when a customer demands it, though they have asked politely for some time.  The more information we have about what is happening in our systems, the better the project manager and the project team is armed with applying the expertise which qualified the individuals for their jobs to begin with.

When it comes to continual process improvement one does not need to wait to apply those technologies that will improve project management systems.  As a senior management (and well-respected engineer) when I worked in Navy told me; “if my program managers are doing their job virtually every element should be in the yellow, for only then do I know that they are managing risk and pushing the technology.”

But there are some practical issues that all managers must consider when managing the risks in introducing new technology and determining how to bring that technology into existing business systems without completely disrupting the organization.  This takes–good project management practices that, for information systems, includes good initial systems analysis, identification of those small portions of the organization ripe for initial entry in piloting, and a plan of data normalization and rationalization so that corporate knowledge is not lost.  Adopting systems that support more open systems that militate against proprietary barriers also helps.

c.  The intersection of project management and business analysis and its effects.

As data becomes more transparent through methods of normalization and rationalization–and the focus shifts from “tools” to the knowledge that can be derived from data–the clear separation that delineated project management from business analysis in line-and-staff organization becomes further blurred.  Even within the project management discipline, the separation in categorization of schedule analysts from cost analysts from financial analyst are becoming impediments in fully exploiting the advantages in looking at all data that is captured and which affects project performance.

d.  The manner of handling Big Data, business intelligence, and analytics that result.

Software technologies are rapidly developing that break the barriers of self-contained applications that perform one or two focused operations or a highly restricted group of operations that provide functionality focused on a single or limited set of business processes through high level languages that are hard-coded.  These new technologies, as stated in the previous section, allow users to focus on access to data, making the interface between the user and the application highly adaptable and customizable.  As these technologies are deployed against larger datasets that allow for integration of data across traditional line-and-staff organizations, they will provide insight that will garner businesses competitive advantages and productivity gains against their contemporaries.  Because of these technologies, highly labor-intensive data mining and data engineering projects that were thought to be necessary to access Big Data will find themselves displaced as their cost and lack of agility is exposed.  Internal or contracted out custom software development devoted along these same lines will also be displaced just as COTS has displaced the high overhead associated with these efforts in other areas.  This is due to the fact that hardware and processes developments are constantly shifting the definition of “Big Data” to larger and larger datasets to the point where the term will soon have no practical meaning.

e.  The role of the SME given all of the above.

The result of the trends regarding technology will be to put the subject matter expert back into the driver’s seat.  Given adaptive technology and data–and a redefinition of the analyst’s role to a more expansive one–we will find that the ability to meet the needs of functionality and the user experience is almost immediate.  Thus, when it comes to business and project management systems, the role of Agile, while these developments reinforce the characteristics that I outlined above are made real, the weakness of its applicability to more complex and technical projects is also revealed.  It is technology that will reduce the risk associated with contract negotiation, processes, documentation, and planning.  Walking away from these necessary components to project management obfuscates and avoids the hard facts that oftentimes must be addressed.

One final item that Mr. Qureshi mentions in a follow-up post–and which I have seen elsewhere in similar forums–concerns operational security.  In deployment of new technologies a gatekeeper must be aware of whether that technology will not open the organization’s corporate knowledge to compromise.  Given the greater and more integrated information and knowledge garnered by new technology, as good managers it is incumbent to ensure these improvements do not translate into undermining the organization.

The (Contract) is parent to the (Project)

It’s been a late spring filled with travel and tragedy.  Blogging had taken a hiatus, except for AITS.org, which I highly encourage you check out.  My next item will be posted there the first week of July.  The news from Orlando is that we are united and strong as a community, facing down both crackpots and opportunists, and so it is back to work.

At a recent conference one of the more interesting conversations surrounded the difference between contract and project management.  To many people this is one of the same–and a simple Google search reinforces this perception–but, I think, this is a misconception.

The context of the discussion was interesting in that it occurred during an earned value management-focused event.  EVM pitches itself as the glue that binds together the parts of project management that further constitutes integrated project management, but I respectfully disagree.  If we ignore the self-promotion of this position and like good engineers stick to our empiricist approach, we will find that EVM is a method of deriving the financial value of effort within a project.  It is also a pretty good indicator of cost risk manifestation.  This last shouldn’t be taken too far.

A recent DoD study, which is not yet published, demonstrated that early warning cannot be had by EVM even when diving into the details.  Instead, ensuring integration and traceability to the work package level tied to schedule activities could be traced to the slips in schedule (and the associated impact of the bow wave) against the integrated master schedule (IMS), which then served as the window to early warning.  So within the limited context of project performance, EVM itself is just one of many points of entry to eventually get to the answer.  This answer, of course, needs to be both timely and material.

Material in this case refers to the ability to understand the relevance and impact of the indicator.  The latest buzz-phrase to this condition is “actionable” but that’s just a marketing ploy to make a largely esoteric and mundane evolution sound more exciting.  No indicator by itself is ever actionable.  In some cases the best action is no action.  Furthermore, a seemingly insignificant effort may have asymmetrical impacts that threaten the project itself.  This is where risk enters the picture.

When speaking of risk, all too often the discussion comes down to simulated Monte Carlo analysis.  For the project professional situated within the earned value domain, this is a convenient way to pigeonhole the concept and keep it bounded within familiar pathways, but it does little to add new information.  When applied within this context the power of Monte Carlo is limited to a range of probable outcomes within the predictive capabilities of EVM and the IMS.  This is not to minimize the importance of applying the method to these artifacts but, instead, a realization that it is a limited application.

For risk also includes factors that are external to these measurements.  Oftentimes this is called qualitative risk, but that is an all too familiar categorization that makes it seem fuzzy.  These external factors are usually the driving environment factors that limit the ability of the project to adapt.  These factors also incorporate the framing assumptions underlying the justification for the project effort.  Thus, we are led to financing and the conditions needed to achieve the next milestone for financing.  In government project management, this is known as the budget hearing cycle, and it can be both contentious and risky.

Thus, as with the title of this post, the project is really the child of the contract.  Yet when speaking of contract management the terms or often intertwined, or are relegated to the prosaic legalese of contract clauses and, in government, to the Federal Acquisition Regulation (FAR).  But that does not constitute contract management.

This is where our discussions became interesting.  Because need invoke only one element not incorporated into consideration to prove the point.  Let’s take Contract Budget Base (CBB).  This number is made up of the negotiated contract cost (NCC) plus authorized unpriced work (AUW).  In order to take these elements into account, since existing systems act as if they are external to consideration, ephemeral tools or spreadsheets are used to augment the tracking and incorporation of AUW and its impact on the CBB, though the risk of incorrectly tracking and incorporating this work is immeasurably more risky than any single work package or control account in the more closely monitored program management baseline (PMB).  The same goes with management reserve (MR), and even within the PMB itself, undistributed budget (UB), work authorizations (WADs), and change order tracking and impact analysis are often afterthoughts.

But back to the contract itself, the highest elements of the contract are the total allocated budget (TAB) and profit/fee.  But this is simply shorthand for the other elements that affect the TAB.  For example, some contracts have contract clauses that provide incentives and/or penalties that are tied to technical achievement or milestones, yet our project systems act as if these conditions are unanticipated events that fall from the sky.  Only by augmenting project management indicators are these important contract management anticipated and their impacts assessed.

In my own experience, in looking at the total contract, I have seen projects fail for want of the right “color” of money being provided within the window for decisive impact on risk manifestation.  Thus, cashflow–and the manner in which cashflow is released to fund a project–enters the picture.  But more to the point, I have seen the decision regarding cashflow made based on inadequate or partial data that was collected at a level of the structure that was largely irrelevant.  When looking at the life-cycle management of a system–another level up in our hierarchy–our need for awareness–and the information systems that can augment that awareness–becomes that much more acute.

The point here is that, while we are increasingly concerned about the number of angels dancing on the head of the EVM pin, we are ignoring other essential elements of project success.  When speaking of integrated project management, we are speaking of slightly expanding our attention span in understanding the project ecosystem–and yet even those moderate efforts meet resistance.  Given new technology, it is time to begin incorporating those elements that go well beyond the integration of cost, schedule, and bounded schedule risk.

 

Don’t Know Much…–Knowledge Discovery in Data

A short while ago I found myself in an odd venue where a question was posed about my being an educated individual, as if it were an accusation.  Yes, I replied, but then, after giving it some thought, I made some qualifications to my response.  Educated regarding what?

It seems that, despite a little more than a century of public education and widespread advanced education having been adopted in the United States, along with the resulting advent of widespread literacy, that we haven’t entirely come to grips with what it means.  For the question of being an “educated person” has its roots in an outmoded concept–an artifact of the 18th and 19th century–where education was delineated, and availability determined, by class and profession.  Perhaps this is the basis for the large strain of anti-intellectualism and science denial in the society at large.

Virtually everyone today is educated in some way.  Being “educated” means nothing–it is a throwaway question, an affectation.  The question is whether the relevant education meets the needs of the subject being addressed.  An interesting discussion about this very topic is explored at Sam Harris’ blog in the discussion he held with amateur historian Dan Carlin.

In reviewing my own education, it is obvious that there are large holes in what I understand about the world around me, some of them ridiculously (and frustratingly) prosaic.  This shouldn’t be surprising.  For even the most well-read person is ignorant about–well–virtually everything in some manner.  Wisdom is reached, I think, when you accept that there are a few things that you know for certain (or have a high probability and level of confidence in knowing), and that there are a host of things that constitute the entire library of knowledge encompassing anything from a particular domain to that of the entire universe, which you don’t know.

To sort out a well read dilettante from someone who can largely be depended upon to speak with some authority on a topic, educational institutions, trade associations, trade unions, trade schools, governmental organizations, and professional organizations have established a system of credentials.  No system is entirely perfect and I am reminded (even discounting fraud and incompetence) that half of all doctors and lawyers–two professions that have effectively insulated themselves from rigorous scrutiny and accountability to the level of almost being a protected class–graduate in the bottom half of their class.  Still, we can sort out a real brain surgeon from someone who once took a course in brain physiology when we need medical care (to borrow an example from Sam Harris in the same link above).

Furthermore, in the less potentially life-threatening disciplines we find more variation.  There are credentialed individuals who constantly get things wrong.  Among economists, for example, I am more likely to follow those who got the last financial crisis and housing market crash right (Joe Stiglitz, Dean Baker, Paul Krugman, and others), and those who have adjusted their models based on that experience (Brad DeLong, Mark Thoma, etc.), than those who have maintained an ideological conformity and continuity despite evidence.  Science–both what are called the hard and soft sciences–demands careful analysis and corroborating evidence to be tied to any assertions in their most formalized contexts.  Even well accepted theories among a profession are contingent–open to new information and discovery that may modify, append, or displace them.  Furthermore, we can find polymaths and self-taught individuals who have equaled or exceeded credentialed peers.  In the end the proof is in the pudding.

My point here is threefold.  First, in most cases we don’t know what we don’t know.  Second, complete certainty is not something that exists in this universe, except perhaps at death.  Third, we are now entering a world where new technologies allow us to discover new insights in accessing previously unavailable or previously opaque data.

One must look back at the revolution in information over the last fifty years and its resulting effect on knowledge to see what this means in our day-to-day existence.  When I was a small boy in school we largely relied on the published written word.  Books and periodicals were the major means of imparting information, aside from collocated collaborative working environments, the spoken word, and the old media of magazines, radio, and television.  Information was hard to come by–libraries were limited in their collections and there were centers of particular domain knowledge segmented by geography.   Furthermore, after the introduction of television, society had developed  trusted sources and gatekeepers to keep the cranks and flimflam out.

Today, new media–including all forms of digitized information–has expanded and accelerated the means of transmitting information.  Unlike old media, books, and social networking, there are also fewer gatekeepers in new media: editors, fact checkers, domain experts, credentialed trusted sources, etc. that ensure quality control, reliability, fidelity of the information, and provide context.  It’s the wild west of information and those wooed by the voodoo of self-organization contribute to the high risk associated with relying on information provided through these sources.  Thus, organizations and individuals who wish to stay within the fact-based community have had to sort out reliable, trusted sources and, even in these cases, develop–for lack of a better shorthand–BS detectors.  There are two purposes to this exercise: to expand the use of the available data and leverage the speed afforded by new media, and to ensure that the data is reliable and can reliably tell us something important about our subject of interest.

At the level of the enterprise, the sector, or the project management organization, we similarly are faced with the situation in which the scope of data that can be converted into information is rapidly expanding.  Unlike the larger information market, this data on the microeconomic level is more controlled.  Given that data at this level suffers from significance because it records isolated events, or small sample sizes, the challenge has been to derive importance from data where sometimes significance is minimal.

Furthermore, our business systems, because of the limitations of the selected technology, have been self-limiting.  I come across organizations all the time who cannot imagine the incorporation and integration of additional data sets largely because the limitations of their chosen software solution has inculcated that approach–that belief–into the larger corporate culture.  We do not know what we do not know.

Unfortunately, it’s what you do not know that, more often than not, will play a significant role in your organization’s destiny, just as an individual that is more self-aware is better prepared to deal with the challenges that manifest themselves as risk and its resultant probabilities.  Organizations must become more aware and look at things differently, especially since so many of the more conventional means of determining risk and opportunities seems to be failing to keep up with the times, which is governed by the capabilities of new media.

This is the imperative of applying knowledge discovery in data at the organizational and enterprise level–and in shifting one’s worldview from focusing on the limitations of “tools”: how they paint a screen, whether data is displayed across the x or y axis, what shade of blue indicates good performance, how many keystrokes does it take to perform an operation, and all manner of glorified PowerPoint minutia–to a focus on data:  the ability of solutions to incorporate more data, more efficiently, more quickly, from a wider range of sources, and processed in a more effective manner, so that it is converted into information to be able to be used to inform decision making at the most decisive moment.