Potato, Potahto, Tomato, Tomahto: Data Normalization vs. Standardization, Why the Difference Matters

In my vocation I run a technology company devoted to program management solutions that is primarily concerned with taking data and converting it into information to establish a knowledge-based environment. Similarly, in my avocation I deal with the meaning of information and how to turn it into insight and knowledge. This latter activity concerns the subject areas of history, sociology, and science.

In my travels just prior to and since the New Year, I have come upon a number of experts and fellow enthusiasts in these respective fields. The overwhelming numbers of these encounters have been productive, educational, and cordial. We respectfully disagree in some cases about the significance of a particular approach, governance when it comes to project and program management policy, but generally there is a great deal of agreement, particularly on basic facts and terminology. But some areas of disagreement–particularly those that come from left field–tend to be the most interesting because they create an opportunity to clarify a larger issue.

In a recent venue I encountered this last example where the issue was the use of the phrase data normalization. The issue at hand was that the use of “data normalization” suggested some statistical methodology in reconciling data into a standard schema. Instead, it was suggested, the term “data standardization” was more appropriate.

These phrases do not describe the same thing, but they do describe processes that are symbiotic, not mutually exclusive. So what about data normalization? No doubt there is a statistical use of the term, but we are dealing with the definition as used in digital technology here, just as the use of “standardization” was suggested in the same context. There are many examples of technical terminology that do not have the same meaning when used in different contexts. Here is the definition of normalization applied to data science from Technopedia, which is the proper use of the term in this case:

Normalization is the process of reorganizing data in a database so that it meets two basic requirements: (1) There is no redundancy of data (all data is stored in only one place), and (2) data dependencies are logical (all related data items are stored together). Normalization is important for many reasons, but chiefly because it allows databases to take up as little disk space as possible, resulting in increased performance.

Normalization is also known as data normalization

This is pretty basic (and necessary) stuff. I have written at length about data normalization, but also pair it with two other terms. This is data rationalization and contextualization. Here is a short definition of rationalization:

What is the benefit of Data Rationalization? To be able to effectively exploit, manage, reuse, and govern enterprise data assets (including the models which describe them), it is necessary to be able to find them. In addition, there is (or should be) a wealth of semantics (e.g. business names, definitions, relationships) embedded within an organization’s models that can be exposed for improved analysis and knowledge transfer. By linking model objects (across or within models) it is possible to discover the higher order conceptual objects for any given object. Conversely, it is possible to identify what implementation artifacts implement a higher order model object. For example, using data rationalization, one can traverse from a conceptual model entity to a logical model entity to a physical model table to a database table, etc. Similarly, Data Rationalization enables understanding of a database table by traversing up through the different model levels.

Finally, we have contextualization. Here is a good definition using Wikipedia:

Context or contextual information is any information about any entity that can be used to effectively reduce the amount of reasoning required (via filtering, aggregation, and inference) for decision making within the scope of a specific application.[2] Contextualisation is then the process of identifying the data relevant to an entity based on the entity’s contextual information. Contextualisation excludes irrelevant data from consideration and has the potential to reduce data from several aspects including volume, velocity, and variety in large-scale data intensive applications

There is no approximation of reflecting the accuracy of data in any of these terms wihin the domain of data and computer science. Nor are there statistical methods involved to approximate what needs to be accomplished precisely. The basic skill required to accomplish these tasks–knowing that the data is structured and pre-conditioned–is to reconcile the various lexicons from differing sources, much as I reconcile in my avocation the meaning of words and phrases across periods in history and across languages.

In this discussion we are dealing with the issue of different words used to describe a process or phenomenon. Similarly, we find this challenge in data.

So where does this leave data standardization? In terms of data and computer science, this describes a completely different method. Here is a definition from Wikipedia, which is the proper contextual use of the term under “Standard data model”:

A standard data model or industry standard data model (ISDM) is a data model that is widely applied in some industry, and shared amongst competitors to some degree. They are often defined by standards bodies, database vendors or operating system vendors.

In the context of project and program management, particularly as it relates to government data submission and international open standards across vendors in an industry, is the use of a common schema. In this case there is a DoD version of a UN/CEFACT XML file currently set as the standard, but soon to be replaced by a new standard using the JSON file structure.

In any event, what is clear here is that, while standardization is a necessary part of a data policy to allow for sharing of information, the strength of the chosen schema and the instructions regarding it will vary–and this variation will have an effect on the quality of the information shared. But that is not all.

This is where data normalization, rationalization, and contextualization come into play. In order to create data for the a standardized format, it is first necessary to convert what is an otherwise opaque set of data due to differences into a cohesive lexicon. In data, this is accomplished by reconciling data dictionaries to determine which items are describing the same thing, process, measure, or phenomenon. In a domain like program management, this is a finite set. But it is also specialized knowledge and where the value is added to any end product that is produced. Then, once we know how to identify the data, we must be able to map those terms to the standard schema but, keeping on eye on the use of the data down the line, must be able to properly structure and ensure interrelationships of the data are established and/or maintained to ensure its effective use. This is no mean task and why all data transformation methods and companies are not the same.

Furthermore, these functions can be accomplished efficiently or inefficiently. The inefficient method is to take the old-fashioned business intelligence method that has been around since the 1980s and before, where a team of data scientists and analysts deal with data as if it is flat and, essentially, reinvents the wheel in establishing the meaning and proper context of the data. Given enough time and money anything can be accomplished, but brute force labor will not defeat the Second Law of Thermodynamics.

In computing, which comes close to minimizing that physical law, we know that data has already been imbued with meaning upon its initial processing. In lieu of brute force labor we apply intelligence and knowledge to accomplish this requirement. This is called normalization, rationalization, and contextualization of data. It requires a small fraction of other methods in terms of time and effort, and is infinitely more transparent.

Using these methods is also where innovation, efficiency, performance, accuracy, scalability, and anticipating future requirements based on the latest technology trends comes into play. Establishing a seamless flow of data integration allows, for example, the capture of more data being able to be properly structured in a database, which lays the ground for the transition from 2D to 3D and 4D (that is, what is often called integrated) program management, as well as more effective analytics.

The term “standardization” also suffers from a weakness in data and computer science that requires that it be qualified. After all, data standardization in an enterprise or organization does not preclude the prescription of a propriety dataset. In government, this is contrary to both statutory and policy mandates. Furthermore, even given an effective, open standard, there will be a large pool of legacy and other non-conforming data that will still require capture and transformation.

The Section 809 Panel study dealt directly with this issue:

Use existing defense business system open-data requirements to improve strategic decision making on acquisition and workforce issues…. DoD has spent billions of dollars building the necessary software and institutional infrastructure to collect enterprise wide acquisition and financial data. In many cases, however, DoD lacks the expertise to effectively use that data for strategic planning and to improve decision making. Recommendation 88 would mitigate this problem by implementing congressional open-data mandates and using existing hiring authorities to bolster DoD’s pool of data science professionals.

Section 809 Volume 3, Section 9, p.477

As operating environment companies expose more and more capability into the market through middleware and other open systems methods of visualizing data, the key to a system no longer resides in its ability to produce charts and graphs. The use of Excel as an ad hoc data repository with its vulnerability to error, to manipulation, and for its resistance to the establishment of an optimized data management and corporate knowledge environment is a symptom of the larger issue.

Data and its proper structuring is at the core of organizational success and process improvement. Standardization alone will not address barriers to data optimization. According to RAND studies in 2015 and 2017* these are:

  • Data Quality and Discontinuities
  • Data Silos and Underutilized Repositories
  • Timeliness of Data for use by SMEs and Decision-makers
  • Lack of Access and Contextualization
  • Traceability and Auditability
  • Lack of the Ability to Apply Discovery in the Data
  • The issue of Contractual Technical Data and Proprietary Data

That these issues also exist in private industry demonstrates the universality of the issue. Thus, yes, standardize by all means. But also ensure that the standard is open and that transformation is traceable and auditable from the the source system to the standard schema, and then into the target database. Only then will the enterprise, the organization, and the government agency have full ownership of the data it requires to efficiently and effectively carry out its purpose.

*RAND Corporation studies are “Issues with Access to Acquisition Data and Information in the DoD: Doing Data Right in Weapons System Acquisition” (RR880, 2017), and “Issues with Access to Acquisition Data and Information in the DoD: Policy and Practice (RR1534, 2015). These can be found here.

Open: Strategic Planning, Open Data Systems, and the Section 809 Panel

Sundays are usually days reserved for music and the group Rhye was playing in the background when this topic came to mind.

I have been preparing for my presentation in collaboration with my Navy colleague John Collins for the upcoming Integrated Program Management Workshop in Baltimore. This presentation will be a non-proprietary/non-commercial talk about understanding the issue of unlocking data to support national defense systems, but the topic has broader interest.

Thus, in advance of that formal presentation in Baltimore, there are issues and principles that are useful to cover, given that data capture and its processing, delivery, and use is at the heart of all systems in government, and private industry and organizations.

Top Data Trends in Industry and Their Relationship to Open Data Systems

According to Shohreh Gorbhani, Director, Project Control Academy, the top five data trends being pursued by private industry and technology companies. My own comments follow as they relate to open data systems.

  1. Open Technologies that transition from 2D Program Management to 3D and 4D PM. This point is consistent with the College of Performance Management’s emphasis on IPM, but note that the stipulation is the use of open technologies. This is an important distinction technologically, and one that I will explore further in this post.
  2. Real-time Data Capture. This means capturing data in the moment so that the status of our systems is up-to-date without the present delays associated with manual data management and conditioning. This does not preclude the collection of structured, periodic data, but also does include the capture of transactions from real-time integrated systems where appropriate.
  3. Seamless Data Flow Integration. From the perspective of companies in manufacturing and consumer products, technologies such as IoT and Cloud are just now coming into play. But, given the underlying premises of items 1 and 2, this also means the proper automated contextualization of data using an open technology approach that flows in such a way as to be traceable.
  4. The use of Big Data. The term has lost a good deal of its meaning because of its transformation into a buzz-phrase and marketing term. But Big Data refers to the expansion in the depth and breadth of available data driven by the economic forces that drive Moore’s Law. What this means is that we are entering a new frontier of data processing and analysis that will, no doubt, break down assumptions regarding the validity and strength of certain predictive analytics. The old assumptions that restrict access to data due to limitations of technology and higher cost no longer apply. We are now in the age of Knowledge Discovery in Data (KDD). The old approach of reporting assumed that we already know what we need to know. The use of data challenges old assumptions and allows us to follow the data where it will lead us.
  5. AI Forecasting and Analysis. No doubt predictive AI will be important as we move forward with machine learning and other similar technologies. But this infant is not yet a rug rat. The initial experiences with AI are that they tend to reflect the biases of the creators. The danger here is that this defeats KDD, which results in stagnation and fugue. But there are other areas where AI can be taught to automate mundane, value-neutral tasks relating to raw data interpretation.

The 809 Panel Recommendation

The fact that industry is the driving force behind these trends that will transform the way that we view information in our day-to-day work, it is not surprising that the 809 Panel had this to say about existing defense business systems:

“Use existing defense business system open-data requirements to improve strategic decision making on acquisition and workforce issues…. DoD has spent billions of dollars building the necessary software and institutional infrastructure to collect enterprise wide acquisition and financial data. In many cases, however, DoD lacks the expertise to effectively use that data for strategic planning and to improve decision making. Recommendation 88 would mitigate this problem by implementing congressional open-data mandates and using existing hiring authorities to bolster DoD’s pool of data science professionals.”

Section 809 Volume 3, Section 9, p. 477

At one point in my military career, I was assigned as the Materiel, Fuels, and Transportation Officer of Naval Air Station, Norfolk. As a major naval air base, transportation hub, and home to a Naval Aviation Depot, we shipped and received materiel and supplies across the world. In doing so, our transportation personnel would use what at the time was new digital technology to complete an electronic bill of lading that specified what and when items were being shipped, the common or military carrier, the intended recipient, and the estimated date of arrival, among other essential information.

The customer and receiving end of this workflow received an open systems data file that contained these particulars. The file was an early version of open data known as an X12 file, for which the commercial transportation industry was an early adopter. Shipping and receiving activities and businesses used their own type of local software: and there were a number of customized and commercial choices out there, as well as those used by common carriers such various trucking and shipping firms, the USPS, FEDEX, DHS, UPS, and others. The X12 file was the DMZ that made the information open. Software manufacturers, if they wanted to stay relevant in the market, could not impose a proprietary data solution.

Furthermore, standardization of terminology and concepts ensured that the information was readable and comprehensible wherever the items landed–whether across receiving offices in the United States, Japan, Europe, or even Istanbul. Understanding that DoD needs the skillsets to be able to optimize data, it didn’t require an army of data scientists to achieve this end-state. It required the right data science expertise in the right places, and the dictates of transportation consumers to move the technology market to provide the solution.

Over the years both industry and government have developed a number of schema standards focused on specific types of data, progressing from X12 to XML and now projected to use JSON-based schemas. Each of them in their initial iterations automated the submission of physical reports that had been required by either by contract or operations. These focused on a small subset of the full dataset relating to program management and project controls.

This progression made sense.

When digitized technology is first introduced into an intensive direct-labor environment, the initial focus is to automate the production of artifacts and their underlying processes in order to phase in the technology’s acceptance. This also allows the organization to realize immediate returns on investment and improvements in productivity. But this is the first step, not the final one.

Currently for project controls the current state is the UN/CEFACT XML for program performance management data, and the contract cost and labor data collection file known as the FlexFile. Clearly the latter file, given that the recipient is the Office of the Secretary of Defense Cost Assessment and Program Evaluation (OSD CAPE), establish it as one of many feedback loops that support that office’s role in coordinating the planning, programming, budgeting, and evaluation (PPBE) system related to military strategic investments and budgeting, but only one. The program performance information is also a vital part of the PPBE process in evaluation and in future planning.

For most of the U.S. economy, market forces and consumer requirements are the driving force in digital innovation. The trends noted by Ms. Gorbhani can be confirmed through a Google search of any one of the many technology magazines and websites that can be found. The 809 Panel, drawn as it was from specialists and industry and government, were tasked “to provide recommendations that would allow DoD to adapt and deliver capability at market speeds, while ensuring that DoD remains true to its commitment to promote competition, provide transparency in its actions, and maintain the integrity of the defense acquisition system.”

Given that the work of the DoD is unique, creating a type of monopsony, it is up to leadership within the Department to create the conditions and mandates necessary to recreate in microcosm the positive effects of market forces. The DoD also has a very special, vital mission in defending the nation.

When an individual business cobbles together its mission statement it is that mission that defines the necessary elements in data collection that are then essential in making decisions. In today’s world, best commercial sector practice is to establish a Master Data Management (MDM) approach in defining data requirements and practices. In the case of DoD, a similar approach would be beneficial. Concurrent with the period of the 809 Panel’s efforts, RAND Corporation delivered a paper in 2017 (link in the previous sentence) that made recommendations related to data governance that are consistent with the 809 Panel’s recommendations. We will be discussing these specific recommendations in our presentation.

Meeting the mission and readiness are the key components to data governance in DoD. Absent such guidance, specialized software solution providers, in particular, will engage in what is called “rent-seeking” behavior. This is an economic term that means that an “entity (that) seeks to gain added wealth without any reciprocal contribution of productivity.”

No doubt, given the marketing of software solution providers, it is hard for decision-makers to tell what constitutes an open data system. The motivation of a software solution is to make itself as “sticky” as possible and it does that by enticing a customer to commit to proprietary definitions, structures, and database schemas. Usually there are “black-boxed” portions of the software that makes traceability impossible and that complicates the issue of who exactly owns the data and the ability of the customer to optimize it and utilize it as the mission dictates.

Furthermore, data visualization components like dashboards are ubiquitous in the market. A cursory stroll through a tradeshow looks like a dashboard smorgasbord combined with different practical concepts of what constitutes “open” and “integration”.

As one DoD professional recently told me, it is hard to tell the software systems apart. To do this it is necessary to understand what underlies the software. Thus, a proposed honest-broker definition of an open data system is useful and the place to start, given that this is not a notional concept since such systems have been successfully been established.

The Definition of Open Data Systems

Practical experience in implementing open data systems toward the goal of optimizing essential information from our planning, acquisition, financial, and systems engineering systems informs the following proposed definition, which is based on commercial best practice. This proposal is also based on the principle that the customer owns the data.

  1. An open data system is one based on non-proprietary neutral schemas that allow for the effective capture of all essential elements from third-party proprietary and customized software for reporting and integration necessary to support both internal and external stakeholders.
  2. An open data system allows for complete traceability and transparency from the underlying database structure of the third-party software data, through the process of data capture, transformation, and delivery of data in the neutral schema.
  3. An open data system targets the loading of the underlying source data for analysis and use into a neutral database structure that replicates the structure of the neutral schema. This allows for 100% traceability and audit of data elements received through the neutral schema, and ensures that the receiving organization owns the data.

Under this definition, data from its origination to its destination is more easily validated and traced, ensuring quality and fidelity, and establishing confidence in its value. Given these characteristics, integration of data from disparate domains becomes possible. The tracking of conflicting indicators is mitigated, since open system data allows for its effective integration without the bias of proprietary coding or restrictions on data use. Finally, both government and industry will not only establish ownership of their data–a routine principle in commercial business–but also be free to utilize new technologies that optimize the use of that data.

In closing, Gahan Wilson, a cartoonist whose work appeared in National Lampoon, The New Yorker, Playboy, and other magazines recently passed.

When thinking of the barriers to the effective use of data, I came across this cartoon in The New Yorker:

Open Data is the key to effective integration and reporting–to the optimal use of information. Once mandated and achieved, our defense and business systems will be better informed and be able to test and verify assumed knowledge, address risk, and eliminate dogmatic and erroneous conclusions. Open Data is the driver of organizational transformation keyed to the effective understanding and use of information, and all that entails. Finally, Open Data is necessary to the mission and planning systems of both industry and the U.S. Department of Defense.

Sledgehammer: Pisano Talks!

My blogging hiatus is coming to an end as I take a sledgehammer to the writer’s block wall.

I’ve traveled far and wide over the last six months to various venues across the country and have collected a number of new and interesting perspectives on the issues of data transformation, integrated project management, and business analytics and visualization. As a result, I have developed some very strong opinions regarding the trends that work and those that don’t regarding these topics and will be sharing these perspectives (with the appropriate supporting documentation per usual) in following posts.

To get things started this post will be relatively brief.

First, I will be speaking along with co-presenter John Collins, who is a Senior Acquisition Specialist at the Navy Engineering & Logistics Office, at the Integrated Program Management Workshop at the Hyatt Regency in beautiful downtown Baltimore’s Inner Harbor 10-12 December. So come on down! (or over) and give us a listen.

The topic is “Unlocking Data to Improve National Defense Systems”. Today anyone can put together pretty visualizations of data from Excel spreadsheets and other sources–and some have made quite a bit of money doing so. But accessing the right data at the right level of detail, transforming it so that its information content can be exploited, and contextualizing it properly through integration will provide the most value to organizations.

Furthermore, our presentation will make a linkage to what data is necessary to national defense systems in constructing the necessary artifacts to support the Department of Defense’s Planning, Programming, Budgeting and Execution (PPBE) process and what eventually becomes the Future Years Defense Program (FYDP).

Traditionally information capture and reporting has been framed as a question of oversight, reporting, and regulation related to contract management, capital investment cost control, and DoD R&D and acquisition program management. But organizations that fail to leverage the new powerful technologies that double processing and data storage capability every 18 months, allowing for both the depth and breadth of data to expand exponentially, are setting themselves up to fail. In national defense, this is a condition that cannot be allowed to occur.

If DoD doesn’t collect this information, which we know from the reports of cybersecurity agencies that other state actors are collecting, we will be at a serious strategic disadvantage. We are in a new frontier of knowledge discovery in data. Our analysts and program managers think they know what they need to be viewing, but adding new perspectives through integration provide new perspectives and, as a result, will result in new indicators and predictive analytics that will, no doubt, overtake current practice. Furthermore, that information can now be processed and contribute more, timely, and better intelligence to the process of strategic and operational planning.

The presentation will be somewhat wonky and directed at policymakers and decisionmakers in both government and industry. But anyone can play, and that is the cool aspect of our community. The presentation will be non-commercial, despite my day job–a line I haven’t crossed up to this point in this blog, but in this latter case will be changing to some extent.

Back in early 2018 I became the sole proprietor of SNA Software LLC–an industry technology leader in data transformation–particularly in capturing datasets that traditionally have been referred to as “Big Data”–and a hybrid point solution that is built on an open business intelligence framework. Our approach leverages the advantages of COTS (delivering the 80% solution out of the box) with open business intelligence that allows for rapid configuration to adapt the solution to an organization’s needs and culture. Combined with COTS data capture and transformation software–the key to transforming data into information and then combining it to provide intelligence at the right time and to the right place–the latency in access to trusted intelligence is reduced significantly.

Along these lines, I have developed some very specific opinions about how to achieve this transformation–and have put those concepts into practice through SNA and delivered those solutions to our customers. Thus, the result has been to reduce both the effort and time to capture large datasets from data that originates in pre-processed data, and to eliminate direct labor and the duration to information delivery by more than 99%. The path to get there is not to apply an army of data scientists and data analysts that deals with all data as if it is flat and to reinvent the wheel–only to deliver a suboptimized solution sometime in the future after unnecessarily expending time and resources. This is a devolution to the same labor-intensive business intelligence approaches that we used back in the 1980s and 1990s. The answer is not to throw labor at data that already has its meaning embedded into its information content. The answer is to apply smarts through technology, and that’s what we do.

Further along these lines, if you are using hard-coded point solutions (also called purpose-built software) and knitted best-of-breed, chances are that you will find that you are poorly positioned to exploit new technology and will be obsolete within the next five years, if not sooner. The model of selling COTS solutions and walking away except for traditional maintenance and support is dying. The new paradigm will be to be part of the solution and that requires domain knowledge that translates into technology delivery.

More on these points in future posts, but I’ve placed the stake in the ground and we’ll see how they hold up to critique and comment.

Finally, I recently became aware of an extremely informative and cutting-edge website that includes podcasts from thought leaders in the area of integrated program management. It is entitled InnovateIPM and is operated and moderated by a gentleman named Rob Williams. He is a domain expert in project cost development, with over 20 years of experience in the oil, gas, and petrochemical industries. Robin has served in a variety of roles throughout his career and is now focuses on cost estimating and Front-End Loading quality assurance. His current role is advanced project cost estimator at Marathon Petroleum’s Galveston Bay Refinery in Texas City.

Rob was also nice enough to continue a discussion we started at a project controls symposium and interviewed me for a podcast. I’ll post additional information once it is posted.

(Data) Transformation–Fear and Loathing over ETL in Project Management

ETL stands for data extract, transform, and load. This essential step is the basis for all of the new capabilities that we wish to acquire during the next wave of information technology: business analytics, big(ger) data, interdisciplinary insight into processes that provide insights into improving productivity and efficiency.

I’ve been dealing with a good deal of fear and loading regarding the introduction of this concept, even though in my day job my organization is a leading practitioner in the field in its vertical. Some of this is due to disinformation by competitors in playing upon the fears of the non-technically minded–the expected reaction of those who can’t do in the last throws of avoiding irrelevance. Better to baffle them with bullshit than with brilliance, I guess.

But, more importantly, part of this is due to the state of ETL and how it is communicated to the project management and business community at large. There is a great deal to be gained here by muddying the waters even by those who know better and have the technology. So let’s begin by clearing things up and making this entire field a bit more coherent.

Let’s start with the basics. Any organization that contains the interaction of people is a system. For purposes of a project management team, a business enterprise, or a governmental body we deal with a special class of systems known as Complex Adaptive Systems: CAS for short. A CAS is a non-linear learning system that reacts and evolves to its environment. It is complex because of the inter-relationships and interactions of more than two agents in any particular portion of the system.

I was first introduced to the concept of CAS through readings published out of the Santa Fe Institute in New Mexico. Most noteworthy is the work The Quark and the Jaguar by the physicist Murray Gell-Mann. Gell-Mann is received the Nobel in physics in 1969 for his work on elementary particles, such as the quark, and is co-founder of the Institute. He also was part of the team that first developed simulated Monte Carlo analysis during a period he spent at RAND Corporation. Anyone interested in the basic science of quanta and how the universe works that then leads to insights into subjects such as day-to-day probability and risk should read this book. It is a good popular scientific publication written by a brilliant mind, but very relevant to the subjects we deal with in project management and information science.

Understanding that our organizations are CAS allows us to apply all sorts of tools to better understand them and their relationship to the world at large. From a more practical perspective, what are the risks involved in the enterprise in which we are engaged and what are the probabilities associated with any of the range of outcomes that we can label as success. For my purposes, the science of information theory is at the forefront of these tools. In this world an engineer by the name of Claude Shannon working at Bell Labs essentially invented the mathematical basis for everything that followed in the world of telecommunications, generating, interpreting, receiving, and understanding intelligence in communication, and the methods of processing information. Needless to say, computing is the main recipient of this theory.

Thus, all CAS process and react to information. The challenge for any entity that needs to survive and adapt in a continually changing universe is to ensure that the information that is being received is of high and relevant quality so that the appropriate adaptation can occur. There will be noise in the signals that we receive. What we are looking for from a practical perspective in information science are the regularities in the data so that we can make the transformation of receiving the message in a mathematical manner (where the message transmitted is received) into the definition of information quality that we find in the humanities. I believe that we will find that mathematical link eventually, but there is still a void there. A good discussion of this difference can be found here in the on-line publication Double Dialogues.

Regardless of this gap, the challenge of those of us who engage in the business of ETL must bring to the table the ability not only to ensure that the regularities in the information are identified and transmitted to the intended (or necessary) users, but also to distinguish the quality of the message in the terms of the purpose of the organization. Shannon’s equation is where we start, not where we end. Given this background, there are really two basic types of data that we begin with when we look at a set of data: structured and unstructured data.

Structured data are those where the qualitative information content is either predefined by its nature or by a tag of some sort. For example, schedule planning and performance data, regardless of the idiosyncratic/proprietary syntax used by a software publisher, describes the same phenomena regardless of the software application. There are only so many ways to identify snow–and, no, the Inuit people do not have 100 words to describe it. Qualifiers apply in the humanities, but usually our business processes more closely align with statistical and arithmetic measures. As a result, structured data is oftentimes defined by its position in a hierarchical, time-phased, or interrelated system that contains a series of markers, indexes, and tables that allow it to be interpreted easily through the identification of a Rosetta stone, even when the system, at first blush, appears to be opaque. When you go to a book, its title describes what it is. If its content has a table of contents and/or an index it is easy to find the information needed to perform the task at hand.

Unstructured data consists of the content of things like letters, e-mails, presentations, and other forms of data disconnected from its source systems and collected together in a flat repository. In this case the data must be mined to recreate what is not there: the title that describes the type of data, a table of contents, and an index.

All data requires initial scrubbing and pre-processing. The difference here is the means used to perform this operation. Let’s take the easy path first.

For project management–and most business systems–we most often encounter structured data. What this means is that by understanding and interpreting standard industry terminology, schemas, and APIs that the simple process of aligning data to be transformed and stored in a database for consumption can be reduced to a systemic and repeatable process without the redundancy of rediscovery applied in every instance. Our business intelligence and business analytics systems can be further developed to anticipate a probable question from a user so that the query is pre-structured to allow for near immediate response. Further, structuring the user interface in such as way as to make the response to the query meaningful, especially integrated with and juxtaposed other types of data requires subject matter expertise to be incorporated into the solution.

Structured ETL is the place that I most often inhabit as a provider of software solutions. These processes are both economical and relatively fast, particularly in those cases where they are applied to an otherwise inefficient system of best-of-breed applications that require data transfers and cross-validation prior to official reporting. Time, money, and effort are all saved by automating this process, improving not only processing time but also data accuracy and transparency.

In the case of unstructured data, however, the process can be a bit more complicated and there are many ways to skin this cat. The key here is that oftentimes what seems to be unstructured data is only so because of the lack of domain knowledge by the software publisher in its target vertical.

For example, I recently read a white paper published by a large BI/BA publisher regarding their approach to financial and accounting systems. My own experience as a business manager and Navy Supply Corps Officer provide me with the understanding that these systems are highly structured and regulated. Yet, business intelligence publishers treated this data–and blatantly advertised and apparently sold as state of the art–an unstructured approach to mining this data.

This approach, which was first developed back in the 1980s when we first encountered the challenge of data that exceeded our expertise at the time, requires a team of data scientists and coders to go through the labor- and time-consuming process of pre-processing and building specialized processes. The most basic form of this approach involves techniques such as frequency analysis, summarization, correlation, and data scrubbing. This last portion also involves labor-intensive techniques at the microeconomic level such as binning and other forms of manipulation.

This is where the fear and loathing comes into play. It is not as if all information systems do not perform these functions in some manner, it is that in structured data all of this work has been done and, oftentimes, is handled by the database system. But even here there is a better way.

My colleague, Dave Gordon, who has his own blog, will emphasize that the identification of probable questions and configuration of queries in advance combined with the application of standard APIs will garner good results in most cases. Yet, one must be prepared to receive a certain amount of irrelevant information. For example, the query on Google of “Fun Things To Do” that you may use if you are planning for a weekend will yield all sorts of results, such as “50 Fun Things to Do in an Elevator.”  This result includes making farting sounds. The link provides some others, some of which are pretty funny. In writing this blog post, a simple search on Google for “Google query fails” yields what can only be described as a large number of query fails. Furthermore, this approach relies on the data originator to have marked the data with pointers and tags.

Given these different approaches to unstructured data and the complexity involved, there is a decision process to apply:

1. Determine if the data is truly unstructured. If the data is derived from a structured database from an existing application or set of applications, then it is structured and will require domain expertise to inherit the values and information content without expending unnecessary resources and time. A structured, systemic, and repeatable process can then be applied. Oftentimes an industry schema or standard can be leveraged to ensure consistency and fidelity.

2. Determine whether only a portion of the unstructured data is relative to your business processes and use it to append and enrich the existing structured data that has been used to integrate and expand your capabilities. In most cases the identification of a Rosetta Stone and standard APIs can be used to achieve this result.

3. For the remainder, determine the value of mining the targeted category of unstructured data and perform a business case analysis.

Given the rapidly expanding size of data that we can access using the advancing power of new technology, we must be able to distinguish between doing what is necessary from doing what is impressive. The definition of Big Data has evolved over time because our hardware, storage, and database systems allow us to access increasingly larger datasets that ten years ago would have been unimaginable. What this means is that–initially–as we work through this process of discovery, we will be bombarded with a plethora of irrelevant statistical measures and so-called predictive analytics that will eventually prove out to not pass the “so-what” test. This process places the users in a state of information overload, and we often see this condition today. It also means that what took an army of data scientists and developers to do ten years ago takes a technologist with a laptop and some domain knowledge to perform today. This last can be taught.

The next necessary step, aside from applying the decision process above, is to force our information systems to advance their processing to provide more relevant intelligence that is visualized and configured to the domain expertise required. In this way we will eventually discover the paradox that effectively accessing larger sets of data will yield fewer, more relevant intelligence that can be translated into action.

At the end of the day the manager and user must understand the data. There is no magic in data transformation or data processing. Even with AI and machine learning it is still incumbent upon the people within the organization to be able to apply expertise, perspective, knowledge, and wisdom in the use of information and intelligence.

Friday Hot Washup: Daddy Stovepipe sings the Blues, and Net Neutrality brought to you by Burger King

Daddy Stovepipe sings the Blues — Line and Staff Organizations (and how they undermine organizational effectiveness)

In my daily readings across the web I came upon this very well written blog post by Glen Alleman at his Herding Cat’s blog. The eternal debate in project management surrounds when done is actually done–and what is the best measurement of progress toward the completion of the end item application?

Glen rightly points to the specialization among SMEs in the PM discipline, and the differences between their methods of assessment. These centers of expertise are still aligned along traditional line and staff organizations that separate scheduling, earned value, system engineering, financial management, product engineering, and other specializations.

I’ve written about this issue where information also follows these stove-piped pathways–multiple data streams with overlapping information, but which resists effective optimization and synergy because of the barriers between them. These barriers may be social or perceptual, which then impose themselves upon the information systems that are constructed to support them.

The manner in which we face and interpret the world is the core basis of epistemology. When we develop information systems and analytical methodologies, whether we are consciously aware of it or not, we delve into the difference between justified belief and knowledge. I see the confusion of these positions in daily life and in almost all professions and disciplines. In fact, most of us find ourselves jumping from belief to knowledge effortlessly without being aware of this internal contradiction–and the corresponding reduction in our ability to accurately perceive reality.

The ability to overcome our self-imposed constraints is the key but, I think, our PM organizational structures must be adjusted to allow for the establishment of a learning environment in relation to data. The first step in this evolution must be the mentoring and education of a discipline that combines these domains. What this proposes is that no one individual need know everything about EVM, scheduling, systems engineering, and financial management. But the business environment today is such, if the business or organization wishes to be prepared for the world ahead, to train transition personnel toward a multi-disciplinary project management competency.

I would posit, contrary to Glen’s recommendation, that no one discipline claim to be the basis for cross-functional integration, only because it may be a self-defeating one. In the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World by David Easley and Jon Kleinberg of Cornell, our social systems are composed of complex networks, but where negative perceptions develop when the network is no longer considered in balance. This subtle and complex interplay of perceptions drive our ability to work together.

It also affects whether we will stay safe the comfort zone of having our information systems tell us what we need to analyze, or whether we apply a more expansive view of leveraging new information systems that are able to integrate ever expanding sets of relevant data to give us a more complete picture of what constitutes “done.”

Hold the Pickle, Hold the Lettuce, Special Orders Don’t Upset Us: Burger King explains Net Neutrality

The original purpose of the internet has been the free exchange of ideas and knowledge. Initially, under ARPANET, Lawrence Roberts and later Bob Kahn, the focus was on linking academic and research institutions so that knowledge could be shared resulting in collaboration that would overcome geographical barriers. Later the Department of Defense, NASA, and other government organizations highly dependent on R&D were brought into the new internet community.

To some extent there still are pathways within what is now broadly called the Web, to find and share such relevant information with these organizations. With the introduction of commercialization in the early 1990s, however, it has been increasingly hard to perform serious research.

For with the expansion of the internet to the larger world, the larger world’s dysfunctions and destructive influences also entered. Thus, the internet has transitioned from a robust First Amendment free speech machine to a place that also harbors state-sponsored psy-ops and propaganda. It has gone form a safe space for academic freedom and research to a place of organized sabotage, intrusion, theft, and espionage. It has transitioned from a highly organized professional community that hewed to ethical and civil discourse, to one that harbors trolls, prejudice, hostility, bullying, and other forms of human dysfunction. Finally and most significantly, it has become dominated by commercial activity, dominated by high tech giants that stifle innovation, and social networking sites that also allow, applying an extreme Laissez-faire attitude, magnify and spread the more dysfunctional activities found in the web as a whole.

At least for those who still looked to the very positive effects of the internet there was net neutrality. The realization that blogs like this one and the many others that I read on a regular basis, including mainstream news, and scientific journals still were available without being “dollarized” in the words of the naturalist John Muir.

Unfortunately this is no longer the case, or will no longer be the case, perhaps, when the legal dust settles. Burger King has placed it marker down and it is a relevant and funny one. Please enjoy and have a great weekend.

 

Learning the (Data) — Data-Driven Management, HBR Edition

The months of December and January are usually full of reviews of significant events and achievements during the previous twelve months. Harvard Business Review makes the search for some of the best writing on the subject of data-driven transformation by occasionally publishing in one volume the best writing on a critical subject of interest to professional through the magazine OnPoint. It is worth making part of your permanent data management library.

The volume begins with a very concise article by Thomas C. Redman with the provocative title “Does Your Company Know What to Do with All Its Data?” He then goes on to list seven takeaways of optimizing the use of existing data that includes many of the themes that I have written about in this blog: better decision-making, innovation, what he calls “informationalize products”, and other significant effects. Most importantly, he refers to the situation of information asymmetry and how this provides companies and organizations with a strategic advantage that directly affects the bottom line–whether that be in negotiations with peers, contractual relationships, or market advantages. Aside from the OnPoint article, he also has some important things to say about corporate data quality. Highly recommended and a good reason to implement systems that assure internal information systems fidelity.

Edd Wilder-James also covers a theme that I have hammered home in a number of blog posts in the article “Breaking Down Data Silos.” The issue here is access to data and the manner in which it is captured and transformed into usable analytics. His recommended approach to a task that is often daunting is to find the path of least resistance in finding opportunities to break down silos and maximize data to apply advanced analytics. The article provides a necessary balm that counteracts the hype that often accompanies this topic.

Both of these articles are good entrees to the subject and perfectly positioned to prompt both thought and reflection of similar experiences. In my own day job I provide products that specifically address these business needs. Yet executives and management in all too many cases continue to be unaware of the economic advantages of data optimization or the manner in which continuing to support data silos is limiting their ability to effectively manage their organizations. There is no doubt that things are changing and each day offers a new set of clients who are feeling their way in this new data-driven world, knowing that the promises of almost effort-free goodness and light by highly publicized data gurus are not the reality of practitioners, who apply the detail work of data normalization and rationalization. At the end it looks like magic, but there is effort that needs to be expended up-front to get to that state. In this physical universe under the Second Law of Thermodynamics there are no free lunches–energy must be borrowed from elsewhere in order to perform work. We can minimize these efforts through learning and the application of new technology, but managers cannot pretend not to have to understand the data that they intend to use to make business decisions.

All of the longer form articles are excellent, but I am particularly impressed with the Leandro DalleMule and Thomas H. Davenport article entitled “What’s Your Data Strategy?” from the May-June 2017 issue of HBR. Oftentimes when addressing big data at professional conferences and in visiting businesses the topic often runs to the manner of handling the bulk of non-structured data. But as the article notes, less than half of an organization’s relevant structured data is actually used in decision-making. The most useful artifact that I have permanently plastered at my workplace is the graphic “The Elements of Data Strategy”, and I strongly recommend that any manager concerned with leveraging new technology to optimize data do the same. The graphic illuminates the defensive and offensive positions inherent in a cohesive data strategy leading an organization to the state: “In our experience, a more flexible and realistic approach to data and information architectures involves both a single source of truth (SSOT) and multiple versions of the truth (MVOTs). The SSOT works at the data level; MVOTs support the management of information.” Elimination of proprietary data silos, elimination of redundant data streams, and warehousing of data that is accessed using a number of analytical methods achieve the necessary states of SSOT that provides the basis for an environment supporting MVOTs.

The article “Why IT Fumbles Analytics” by Donald A. Marchand and Joe Peppard from 2013, still rings true today. As with the article cited above by Wilder-James, the emphasis here is with the work necessary to ensure that new data and analytical capabilities succeed, but the emphasis shifts to “figuring out how to use the information (the new system) generates to make better decisions or gain deeper…insights into key aspects of the business.” The heart of managing the effort in providing this capability is to put into place a project organization, as well as systems and procedures, that will support the organizational transformation that will occur as a result of the explosion of new analytical capability.

The days of simply buying an off-the-shelf silo-ed “tool” and automating a specific manual function are over, especially for organizations that wish to be effective and competitive–and more profitable–in today’s data and analytical environment. A more comprehensive and collaborative approach is necessary. As with the DalleMule and Davenport article, there is a very useful graphic that contrasts traditional IT project approaches against Analytics and Big Data (or perhaps “Bigger” Data) Projects. Though the prescriptions in the article assume an earlier concept of Big Data optimization focused on non-structured data, thereby making some of these overkill, an implementation plan is essential in supporting the kind of transformation that will occur, and managers act at their own risk if they fail to take this effect into account.

All of the other articles in this OnPoint issue are of value. The bottom line, as I have written in the past, is to keep a focus on solving business challenges, rather than buying the new bright shiny object. Alternatively, in today’s business environment the day that business decision-makers can afford to stay within their silo-ed comfort zone are phasing out very quickly, so they need to shift their attention to those solutions that address these new realities.

So why do this apart from the fancy term “data optimization”? Well, because there is a direct return-on-investment in transforming organizations and systems to data-driven ones. At the end of the day the economics win out. Thus, our organizations must be prepared to support and have a plan in place to address the core effects of new data-analytics and Big Data technology:

a. The management and organizational transformation that takes place when deploying the new technology, requiring proactive socialization of the changing environment, the teaching of new skill sets, new ways of working, and of doing business.

b. Supporting transformation from a sub-optimized silo-ed “tell me what I need to know” work environment to a learning environment, driven by what the data indicates, supporting the skills cited above that include intellectual curiosity, engaging domain expertise, and building cross-domain competencies.

c. A practical plan that teaches the organization how best to use the new capability through a practical, hands-on approach that focuses on addressing specific business challenges.

Money for Nothing — Project Performance Data and Efficiencies in Timeliness

I operate in a well regulated industry focused on project management. What this means practically is that there are data streams that flow from the R&D activities, recording planning and progress, via control and analytical systems to both management and customer. The contract type in most cases is Cost Plus, with cost and schedule risk often flowing to the customer in the form of cost overruns and schedule slippages.

Among the methodologies used to determine progress and project eventual outcomes is earned value management (EVM). Of course, this is not the only type of data that flows in performance management streams, but oftentimes EVM is used as shorthand to describe all of the data captured and submitted to customers in performance management. Other planning and performance management data includes time-phased scheduling of tasks and activities, cost and schedule risk assessments, and technical performance.

Previously in my critique regarding the differences between project monitoring and project management (before Hurricane Irma created some minor rearranging of my priorities), I pointed out that “looking in the rear view mirror” was often used as an excuse for by-passing unwelcome business intelligence. I followed this up with an intro to the synergistic economics of properly integrated data. In the first case I answered the critique demonstrating that it is based on an old concept that no longer applies. In the second case I surveyed the economics of data that drives efficiencies. In both cases, new technology is key to understanding the art of the possible.

As I have visited sites in both government and private industry, I find that old ways of doing things still persist. The reason for this is multivariate. First, technology is developing so quickly that there is fear that one’s job will be eliminated with the introduction of technology. Second, the methodology of change agents in introducing new technology often lacks proper socialization across the various centers of power that inevitably exist in any organization. Third, the proper foundation to clearly articulate the need for change is not made. This last is particularly important when stakeholders perform a non-rational assessment in their minds of cost-benefit. They see many downsides and cannot accept the benefits, even when they are obvious. For more on this and insight into other socioeconomic phenomena I strongly recommend Daniel Kahneman’s Thinking Fast and Slow. There are other reasons as well, but these are the ones that are most obvious when I speak with individuals in the field.

The Past is Prologue

For now I will restrict myself to the one benefit of new technology that addresses the “looking in the rear window” critique. It is important to do so because the critique is correct in application (for purposes that I will outline) if incorrect in its cause-and-effect. It is also important to focus on it because the critique is so ubiquitous.

As I indicated above, there are many sources of data in project management. They derive from the following systems (in brief):

a. The planning and scheduling applications, which measure performance through time in the form of discrete activities and events. In the most sophisticated implementations, these applications will include the assignment of resources, which requires the integration of these systems with resource management. Sometimes simple costs are also assigned and tracked through time as well.

b. The cost performance (earned value) applications, which ideally are aligned with the planning and scheduling applications, providing cross-integration with WBS and OBS structures, but focused on work accomplishment defined by the value of work completed against a baseline plan. These performance figures are tied to work accomplishment through expended effort collected by and, ideally, integrated with the financial management system. It involves the proper application of labor rates and resource expenditures in the accomplishment of the work to not only provide an statistical assessment of performance to date, but a projection of likely cost performance outcomes at completion of the effort.

c. Risk assessment applications which, depending of their sophistication and ease of use, provide analysis of possible cost and schedule outcomes, identify the sensitivity of particular activities and tasks, provide an assessment of alternative driving and critical paths, and apply different models of baseline performance to predict future outcomes.

d. Systems engineering applications that provide an assessment of technical performance to date and the likely achievement of technical parameters within the scope of the effort.

e. The financial management applications that provide an accounting of funds allocation, cash-flow, and expenditure, including planning information regarding expenditures under contract and planned expenditures in the future.

These are the core systems of record upon which performance information is derived. There are others as well, depending on the maturity of the project such as ERP systems and MRP systems. But for purposes of this post, we will bound the discussion to these standard sources of data.

In the near past, our ability to understand the significance of the data derived from these systems required manual processing. I am not referring to the sophistication of human computers of 1960s and before, dramatized to great effect in the uplifting movie Hidden Figures. Since we are dealing with business systems, these methodologies were based on simple business metrics and other statistical methods, including those that extended the concept of earned value management.

With the introduction of PCs in the workplace in the 1980s, desktop spreadsheet applications allowed this data to be entered, usually from printed reports. Each analyst not only used standard methods common in the discipline, but also developed their own methods to process and derive importance from the data, transforming it into information and useful intelligence.

Shortly after this development simple analytical applications were introduced to the market that allowed for pairing back the amount of data deriving from some of these systems and performing basic standard calculations, rendering redundant calculations unnecessary. Thus, for example, instead of a person having to calculate multiple estimates to complete, the application could perform those calculations as part of its functionality and deliver them to the analyst for use in, hopefully, their own more extensive assessments.

But even in this case, the data flow was limited to the EVM silo. The data streams relating to schedule, risk, SE, and FM were left to their own devices, oftentimes requiring manual methods or, in the best of cases, cut-and-paste, to incorporate data from reports derived from these systems. In the most extreme cases, for project oversight organizations, this caused analysts to acquire a multiplicity of individual applications (with the concomitant overhead and complexity of understanding differing lexicons and software application idiosyncrasies) in order to read proprietary data types from the various sources just to perform simple assessments of the data before even considering integrating it properly into the context of all of the other project performance data that was being collected.

The bottom line of outlining these processes is to note that, given a combination of manual and basic automated tools, that putting together and reporting on this data takes time, and time, as Mr. Benjamin Franklin noted, is money.

By itself the critique that “looking in the rear view mirror” has no value and attributing it to one particular type of information (EVM) is specious. After all, one must know where one has been and presently is before you can figure out where you need to go and how to get there and EVM is just one dimension of a multidimensional space.

But there is a utility value associated with the timing and locality of intelligence and that is the issue.

Contributors to time

Time when expended to produce something is a form of entropy. For purposes of this discussion at this level of existence, I am defining entropy as availability of the energy in a system to do work. The work in this case is the processing and transformation of data into information, and the further transformation of information into usable intelligence.

There are different levels and sub-levels when evaluating the data stream related to project management. These are:

a. Within the supplier/developer/manufacturer

(1) First tier personnel such as Control Account Managers, Schedulers (if separate), Systems Engineers, Financial Managers, and Procurement personnel among other actually recording and verifying the work accomplishment;

(2) Second tier personnel that includes various levels of management, either across teams or in typical line-and-staff organizations.

b. Within customer and oversight organizations

(1) Reporting and oversight personnel tasks with evaluating the fidelity of specific business systems;

(2) Counterpart project or program officer personnel tasked with evaluating progress, risk, and any factors related to scope execution;

(3) Staff organizations designed to supplement and organize the individual project teams, providing a portfolio perspective to project management issues that may be affected by other factors outside of the individual project ecosystem;

(4) Senior management at various levels of the organization.

Given the multiplicity of data streams it appears that the issue of economies is vast until it is understood that the data that underlies the consumers of the information is highly structured and specific to each of the domains and sub-domains. Thus there are several opportunities for economies.

For example, cost performance and scheduling data have a direct correlation and are closely tied. Thus, these separate streams in the A&D industry were combined under a common schema, first using the UN/CEFACT XML, and now transitioning to a more streamlined JSON schema. Financial management has gone through a similar transition. Risk and SE data are partially incorporated into project performance schemas, but the data is also highly structured and possesses commonalities to be directly accessed using technologies that effectively leverage APIs.

Back to the Future

The current state, despite advances in the data formats that allow for easy rationalization and normalization of data that breaks through propriety barriers, still largely is based a slightly modified model of using a combination of manual processing augmented by domain-specific analytical tools. (Actually sub-domain analytical tools that support sub-optimization of data that are a barrier to incorporation of cross-domain integration necessary to create credible project intelligence).

Thus, it is not unusual at the customer level to see project teams still accepting a combination of proprietary files, hard copy reports, and standard schema reports. Usually the data in these sources is manually entered into Excel spreadsheets or a combination of Excel and some domain-specific analytical tool (and oftentimes several sub-specialty analytical tools). After processing, the data is oftentimes exported or built in PowerPoint in the form of graphs or standard reporting formats. This is information management by Excel and PowerPoint.

In sum, in all too many cases the project management domain, in terms of data and business intelligence, continues to party like it is 1995. This condition also fosters and reinforces insular organizational domains, as if the project team is disconnected from and can possess goals antithetical and/or in opposition to the efficient operation of the larger organization.

A typical timeline goes like this:

a. Supplier provides project performance data 15-30 days after the close of a period. (Some contract clauses give more time). Let’s say the period closed at the end of July. We are now effectively in late August or early September.

b. Analysts incorporate stove-piped domain data into their Excel spreadsheets and other systems another week or so after submittal.

c. Analysts complete processing and analyzing data and submit in standard reporting formats (Excel and PowerPoint) for program review four to six weeks after incorporation of the data.

Items a through c now put a typical project office at project review for July information at the end of September or beginning of October. Furthermore, this information is focused on individual domains, and given the lack of cross-domain knowledge, can be contradictory.

This system is broken.

Even suppliers who have direct access to systems of record all too often rely on domain-specific solutions to be able to derive significance from the processing of project management data. The larger suppliers seem to have recognized this problem and have been moving to address it, requiring greater integration across solutions. But the existence of a 15-30 day reconciliation period after the end of a period, and formalized in contract clauses, is indicative of an opportunity for greater efficiency in that process as well.

The Way Forward

But there is another way.

The opportunities for economy in the form of improvements in time and effort are in the following areas, given the application of the right technology:

  1. In the submission of data, especially by finding data commonalities and combining previously separate domain data streams to satisfy multiple customers;
  2. In retrieving all data so that it is easily accessible to the organization at the level of detailed required by the task at hand;
  3. In processing this data so that it can converted by the analyst into usable intelligence;
  4. In properly accessing, displaying, and reporting properly integrated data across domains, as appropriate, to each level of the organization regardless of originating data stream.

Furthermore, there opportunities to realizing business value by improving these processes:

  1. By extending expertise beyond a limited number of people who tend to monopolize innovations;
  2. By improving organizational knowledge by incorporating innovation into the common system;
  3. By gaining greater insight into more reliable predictors of project performance across domains instead of the “traditional” domain-specific indices that have marginal utility;
  4. By developing a project focused organization that breaks down domain-centric thinking;
  5. By developing a culture that ties cross-domain project knowledge to larger picture metrics that will determine the health of the overarching organization.

It is interesting that when I visit the field how often it is asserted that “the technology doesn’t matter, it’s process that matters”.

Wrong. Technology defines the art of the possible. There is no doubt that in an ideal world we would optimize our systems prior to the introduction of new technology. But that assumes that the most effective organization (MEO) is achievable without technological improvements to drive the change. If one cannot efficiently integrate all submitted cross-domain information effectively and efficiently using Excel in any scenario (after all, it’s a lot of data), then the key is the introduction of new technology that can do that very thing.

So what technologies will achieve efficiency in the use of this data? Let’s go through the usual suspects:

a. Will more effective use of PowerPoint reduce these timelines? No.

b. Will a more robust set of Excel workbooks reduce these timelines? No.

c. Will an updated form of a domain-specific analytical tool reduce these timelines? No.

d. Will a NoSQL solution reduce these timelines? Yes, given that we can afford the customization.

e. Will a COTS BI application that accepts a combination of common schemas and APIs reduce these timelines? Yes.

The technological solution must be fitted to its purpose and time. Technology matters because we cannot avoid the expenditure of time or energy (entropy) in the processing of information. We can perform these operations using a large amount of energy in the form of time and effort, or we can conserve time and effort by substituting the power of computing and information processing. While we will never get to the point where we completely eliminate entropy, our application of appropriate technology makes it seem as if effort in the form of time is significantly reduced. It’s not quite money for nothing, but it’s as close as we can come and is an obvious area of improvement that can be made for a relatively small investment.

Synergy — The Economics of Integrated Project Management

The hot topic lately in meetings and the odd conference on Integrated Project Management (IPM) often focuses on the mechanics of achieving that state, bound by the implied definition of current regulation, which has also become–not surprisingly–practice. I think this is a laudable goal, particularly given both the casual resistance to change (which always there by definition to some extent) and in the most extreme cases a kind of apathy.

I addressed the latter condition in my last post by an appeal to professionalism, particularly on the part of those in public administration. But there is a more elemental issue here than the concerns of project analysts, systems engineers, and the associated information managers. While this level of expertise is essential in the development of innovation, relying too heavily on this level in the organization creates an internal organizational conflict that creates the risk that the innovation is transient and rests on a slender thread. Association with any one manager also leaves innovation vulnerable due to the “not invented here” tact taken by many new managers in viewing the initiatives of a predecessor. In business this (usually self-defeating) approach becomes more extreme the higher one goes in the chain of command (the recent Sears business model anyone?).

The key, of course, is to engage senior managers and project/program managers in participating in the development of this important part of business intelligence. A few suggestions on how to do this follow, but the bottom line is this: money and economics makes the implementation of IPM an essential component of business intelligence.

Data, Information, and Intelligence – Analysis vs. Reporting

Many years ago using manual techniques, I was employed in activities that required that I seek and document data from disparate sources, seemingly unconnected, and find the appropriate connections. The initial connection was made with a key. It could be a key word, topic, individual, technology, or government. The key, however, wasn’t the end of the process. The validity of the relationship needed to be verified as more than mere coincidence. This is a process well known in the community specializing in such processes, and two good sources to understand how this was done can be found here and here.

It is a well trod path to distinguish between the elements that eventually make up intelligence so I will not abuse the reader in going over it. Needless to say that a bit of data is the smallest element of the process, with information following. For project management what is often (mis)tagged as predictive analytics and analysis is really merely information. Thus, when project managers and decision makers look at the various charts and graphs employed by their analysts they are usually greeted with a collective yawn. Raw projections of cost variance, cost to complete, schedule variance, schedule slippage, baseline execution, Monte Carlo risk, etc. are all building blocks to employing business intelligence. But in and of themselves they are not intelligence because these indicators require analysis, weighting, logic testing, and, in the end, an assessment that is directly tied to the purpose of the organization.

The role and application of digitization is to make what was labor intensive less so. In most cases this allows us to apply digital technology to its strength–calculation and processing of large amounts of data to create information. Furthermore, digitization now allows for effective lateral integration among datasets given a common key, even if there are multiple keys that act in a chain from dataset to dataset.

At the end of the line what we are left with is a strong correlation of data integrated across a number of domains that contribute to a picture of how an effort is performing. Still, even given the most powerful heuristics, a person–the consumer–must validate the data to determine if the results possess validity and fidelity. For project management this process is not as challenging as, say, someone using raw social networking data. Project management data, since it is derived from underlying systems that through their processing mimic highly structured processes and procedures, tends to be “small”, even when it can be considered Big Data form the shear perspective of size. It is small Big Data.

Once data has been accumulated, however, it must be assessed so as to ensure that the parts cohere. This is done by assessing the significance and materiality of those parts. Once this is accomplished the overall assessment must then be constructed so that it follows logically from the data. That is what constitutes “actionable intelligence”: analysis of present condition, projected probable outcomes, recommended actions with alternatives. The elements of this analysis–charts, graphs, etc., are essential in reporting, but reporting these indices is not the purpose of the process. The added value of an analyst lies in the expertise one possesses. Without this dimension a machine could do the work. The takeaway from this point, however, isn’t to substitute the work with software. It is to develop analytical expertise.

What is Integrated Project Management?

In my last post I summed up what IPM is, but some elaboration and refinement is necessary.

I propose that Integrated Project Management is defined as that information necessary to derive actionable intelligence from all of the relevant cross-domain information involved in the project organization. This includes cost performance, schedule performance, financial performance and execution, contract implementation, milestone achievement, resource management, and technical performance. Actionable intelligence in this context, as indicated above, is that information that is relevant to the project decision-making authority which effectively identifies specific probable qualitative and quantitative risks, risk impact, and risk handling necessary to make project trade-offs, project re-baselining or re-scope, cost-as-an-independent variable (CAIV), or project cancellation decisions. Underlying all of this are feedback loop systems assessments to ensure that there is integrity and fidelity in our business systems–both human and digital.

The data upon which IPM is derived comes from a finite number of sources. Thus, project management data lends itself to solutions that break down proprietary syntax and terminology. This is really the key to achieving IPM and one that has garnered some discussion when discussing the process of data normalization and rationalization with other IT professionals. The path can be a long one: using APIs to perform data-mining directly against existing tables or against a data repository (or warehouse or lake), or pre-normalizing the data in a schema (given both the finite nature of the data and the finite–and structured–elements of the processes being documented in data).

Achieving normalization and rationalization in this case is not a notional discussion–in my vocation I provide solutions that achieve this goal. In order to do so one must expand their notion of the architecture of the appropriate software solution. The mindset of “tools” is at the core of what tends to hold back progress in integration, that is, the concept of a “tool” is one that is really based on an archaic approach to computing. It assumes that a particular piece of software must limit itself to performing limited operations focused on a particular domain. In business this is known as sub-optimization.

Oftentimes this view is supported by the organization itself where the project management team is widely dispersed and domains hoard information. The rice bowl mentality has long been a bane of organizational effectiveness. Organizations have long attempted to break through these barriers using various techniques: cross-domain teams, integrated product teams, and others.

No doubt some operations of a business must be firewalled in such a way. The financial management of the enterprise comes to mind. But when it comes to business operations, the tools and rice bowl mindset is a self-limiting one. This is why many in IT push the concept of a solution–and the analogue is this: a tool can perform a particular operation (turn a screw, hammer a nail, crimp a wire, etc.); a solution achieves a goal of the system that consists of a series of operations, which are often complex (build the wall, install the wiring, etc.). Software can be a tool or a solution. Software built as a solution contains the elements of many tools.

Given a solution that supports IPM, a pathway is put in place that facilitates breaking down the barriers that currently block effective communication between and within project teams.

The necessity of IPM

An oft-cited aphorism in business is that purpose drives profit. For those in public administration purpose drives success. What this means is that in order to become successful in any endeavor that the organization must define itself. It is the nature of the project–a planned set of interrelated tasks separately organized and financed from the larger enterprise, which is given a finite time and budget specifically to achieve a goal of research, development, production, or end state–that defines an organization’s purpose: building aircraft, dams, ships, software, roads, bridges, etc.

A small business is not so different from a project organization in a larger enterprise. Small events can have oversized effects. What this means in very real terms is that the core rules of economics will come to bear with great weight on the activities of project management. In the world in which we operate, the economics underlying both enterprises and projects punishes inefficiency. Software “tools” that support sub-optimization are inefficient and the organizations that employ them bear unnecessary risk.

The information and technology sectors have changed what is considered to be inefficient in terms of economics. At its core, information has changed the way we view and leverage information. Back in 1997 economists Brad DeLong and Michael Froomkin identified the nature of information and its impact on economics. Their concepts and observations have had incredible staying power if, for no other reason, because what they predicted has come to pass. The economic elements of excludability, rivalry, transparency have transformed how the enterprise achieves optimization.

An enterprise that is willfully ignorant of its condition is one that is at risk. Given that many projects will determine the success of the enterprise, a project that is willfully ignorant of its condition threatens the financial health and purpose of the larger organization. Businesses and public sector agencies can no longer afford not to have cohesive and actionable intelligence built on all of the elements that contribute to determining that condition. In this way IPM becomes not only essential but its deployment necessary.

In the end the reason for doing this comes down to profit on the one hand, and success on the other. Given the increasing transparency of information and the continued existence of rivalry, the trend in the economy will be to reward those that harness the potentials for information integration that have real consequences in the management of the enterprise, and to punish those who do not.

Like Tinker to Evers to Chance: BI to BA to KDD

It’s spring training time in sunny Florida, as well as other areas of the country with mild weather and baseball.  For those of you new to the allusion, it comes from a poem by Franklin Pierce Adams and is also known as “Baseball’s Sad Lexicon”.  Tinker, Evers, and Chance were the double play combination of the 1910 Chicago Cubs (shortstop, second base, and first base).  Because of their effectiveness on the field these Cubs players were worthy opponents of the old New York Giants, for whom Adams was a fan, and who were the kings of baseball during most of the first fifth of a century of the modern era (1901-1922).  That is, until they were suddenly overtaken by their crosstown rivals, the Yankees, who came to dominate baseball for the next 40 years, beginning with the arrival of Babe Ruth.

The analogy here is that the Cubs infielders, while individuals, didn’t think of their roles as completely separate.  They had common goals and, in order to win on the field, needed to act as a unit.  In the case of executing the double play, they were a very effective unit.  So why do we have these dichotomies in information management when the goals are the same?

Much has been written both academically and commercially about Business Intelligence, Business Analytics, and Knowledge Discovery in Databases.  I’ve surveyed the literature and for good and bad, and what I find is that these terms are thrown around, mostly by commercial firms in either information technology or consulting, all with the purpose of attempting to provide a discriminator for their technology or service.  Many times the concepts are used interchangeably, or one is set up as a strawman to push an agenda or product.  Thus, it seems some hard definitions are in order.

According to Technopedia:

Business Intelligence (BI) is the use of computing technologies for the identification, discovery and analysis of business data – like sales revenue, products, costs and incomes.

Business analytics (BA) refers to all the methods and techniques that are used by an organization to measure performance. Business analytics are made up of statistical methods that can be applied to a specific project, process or product. Business analytics can also be used to evaluate an entire company.

Knowledge Discover in Databases (KDD) is the process of discovering useful knowledge from a collection of data. This widely used data mining technique is a process that includes data preparation and selection, data cleansing, incorporating prior knowledge on data sets and interpreting accurate solutions from the observed results.

As with much of computing in its first phases, these functions were seen to be separate.

The perception of BI, based largely on the manner in which it has been implemented in its first incarnations, is viewed as a means of gathering data into relational data warehouses or data marts and then building out decision support systems.  These methods have usually involved a great deal of overhead in both computing and personnel, since practical elements of gathering, sorting, and delivering data involved additional coding and highly structured user interfaces.  The advantage of BI is its emphasis on integration.  The disadvantage from the enterprise perspective, is that the method and mode of implementation is phlegmatic at best.

BA is BI’s younger cousin.  Applications were developed and sold as “analytical tools” focused on a niche of data within the enterprise’s requirements.  In this manner decision makers could avoid having to wait for the overarching and ponderous BI system to get to their needs, if ever.  This led many companies to knit together specialized tools in so-called “best-of-breed” configurations to achieve some measure of integration across domains.  Of course, given the plethora of innovative tools, much data import and reconciliation has had to be inserted into the process.  Thus, the advantages of BA in the market have been to reward innovation and focus on the needs of the domain subject matter expert (SME).  The disadvantages are the insertion of manual intervention in an automated process due to lack of integration, which is further exacerbated by so-called SMEs in data reconciliation–a form of rent seeking behavior that only rewards body shop consulting, unnecessarily driving up overhead.  The panacea applied to this last disadvantage has been the adoption of non-proprietary XML schemas across entire industries that reduce both the overhead and data silos found in the BA market.

KDD is our both our oldster and youngster–grandpa and the grandson hanging out.  It is a term that describes a necessary function of insight–allowing one to determine what the data tells us are needed for analytics rather than relying on a “canned” solution to determine how to approach a particular set of data.  But it does so, oftentimes, using an older approach that predates BI, known as data mining.  You will often find KDD linked to arguments in favor of flat file schemas, NoSQL (meaning flat non-relational databases), and free use of the term Big Data, which is becoming more meaningless each year that it is used, given Moore’s Law.  The advantage of KDD is that it allows for surveying across datasets to pick up patterns and interrelationships within our systems that are otherwise unknown, particularly given the way in which the human mind can fool itself into reifying an invalid assumption.  The disadvantage, of course, is that KDD will have us go backward in terms of identifying and categorizing data by employing Data Mining, which is an older concept from early in computing in which a team of data scientists and data managers develop solutions to identify, categorize, and use that data–manually doing what automation was designed to do.  Understanding these limitations, companies focused on KDD have developed heuristics (cognitive computing) that identify patterns and possible linkages, removing a portion of the overhead associated with Data Mining.

Keep in mind that you never get anything for nothing–the Second Law of Thermodynamics ensures that energy must be borrowed from somewhere in order to produce something–and its corollaries place limits on expected efficiencies.  While computing itself comes as close to providing us with Maxwell’s Demon as any technology, even in this case entropy is being realized elsewhere (in the software developer and the hardware manufacturing process), even though it is not fully apparent in the observed data processing.

Thus, manual effort must be expended somewhere along the way.  In any sense, all of these methods are addressing the same problem–the conversion of data into information.  It is information that people can consume, understand, place into context, and act upon.

As my colleague Dave Gordon has pointed out to me several times that there are also additional methods that have been developed across all of these methods to make our use of data more effective.  These include more powerful APIs, the aforementioned cognitive computing, and searching based on the anticipated questions of the user as is used by search engines.

Technology, however, is moving very rapidly and so the lines between BI, BA and KDD are becoming blurred.  Fourth generation technology that leverages API libraries to be agnostic to underlying data, and flexible and adaptive UI technology can provide a  comprehensive systemic solution to bring together the goals of these approaches to data. With the ability to leverage internal relational database tools and flat schemas for non-relational databases, the application layer, which is oftentimes a barrier to delivery of information, becomes open as well, putting the SME back in the driver’s seat.  Being able to integrate data across domain silos provide insight into systems behavior and performance not previously available with “canned” applications written to handle and display data a particular way, opening up knowledge discovery in the data.

What this means practically is that those organizations that are sensitive to these changes will understand the practical application of sunk cost when it comes to aging systems being provided by ponderous behemoths that lack agility in their ability to introduce more flexible, less costly, and lower overhead software technologies.  It means that information management can be democratized within the organization among the essential consumers and decision makers.

Productivity and effectiveness are the goals.

Something New (Again)– Top Project Management Trends 2017

Atif Qureshi at Tasque, which I learned via Dave Gordon’s blog, went out to LinkedIn’s Project Management Community to ask for the latest tends in project management.  You can find the raw responses to his inquiry at his blog here.  What is interesting is that some of these latest trends are much like the old trends which, given continuity makes sense.  But it is instructive to summarize the ones that came up most often.  Note that while Mr. Qureshi was looking for ten trends, and taken together he definitely lists more than ten, there is a lot of overlap.  In total the major issues seem to the five areas listed below.

a.  Agile, its hybrids, and its practical application.

It should not surprise anyone that the latest buzzword is Agile.  But what exactly is it in its present incarnation?  There is a great deal of rising criticism, much of it valid, that it is a way for developers and software PMs to avoid accountability. Anyone ready Glen Alleman’s Herding Cat’s Blog is aware of the issues regarding #NoEstimates advocates.  As a result, there are a number hybrid implementations of Agile that has Agile purists howling and non-purists adapting as they always do.  From my observations, however, there is an Ur-Agile that is out there common to all good implementations and wrote about them previously in this blog back in 2015.  Given the time, I think it useful to repeat it here.

The best articulation of Agile that I have read recently comes from Neil Killick, whom I have expressed some disagreement on the #NoEstimates debate and the more cultish aspects of Agile in past posts, but who published an excellent post back in July (2015) entitled “12 questions to find out: Are you doing Agile Software Development?”

Here are Neil’s questions:

  1. Do you want to do Agile Software Development? Yes – go to 2. No – GOODBYE.
  2. Is your team regularly reflecting on how to improve? Yes – go to 3. No – regularly meet with your team to reflect on how to improve, go to 2.
  3. Can you deliver shippable software frequently, at least every 2 weeks? Yes – go to 4. No – remove impediments to delivering a shippable increment every 2 weeks, go to 3.
  4. Do you work daily with your customer? Yes – go to 5. No – start working daily with your customer, go to 4.
  5. Do you consistently satisfy your customer? Yes – go to 6. No – find out why your customer isn’t happy, fix it, go to 5.
  6. Do you feel motivated? Yes – go to 7. No – work for someone who trusts and supports you, go to 2.
  7. Do you talk with your team and stakeholders every day? Yes – go to 8. No – start talking with your team and stakeholders every day, go to 7.
  8. Do you primarily measure progress with working software? Yes – go to 9. No – start measuring progress with working software, go to 8.
  9. Can you maintain pace of development indefinitely? Yes – go to 10. No – take on fewer things in next iteration, go to 9.
  10. Are you paying continuous attention to technical excellence and good design? Yes – go to 11. No – start paying continuous attention to technical excellent and good design, go to 10.
  11. Are you keeping things simple and maximising the amount of work not done? Yes – go to 12. No – start keeping things simple and writing as little code as possible to satisfy the customer, go to 11.
  12. Is your team self-organising? Yes – YOU’RE DOING AGILE SOFTWARE DEVELOPMENT!! No – don’t assign tasks to people and let the team figure out together how best to satisfy the customer, go to 12.

Note that even in software development based on Agile you are still “provid(ing) value by independently developing IP based on customer requirements.”  Only you are doing it faster and more effectively.

With the possible exception of the “self-organizing” meme, I find that items through 11 are valid ways of identifying Agile.  Given that the list says nothing about establishing closed-loop analysis of progress says nothing about estimates or the need to monitor progress, especially on complex projects.  As a matter of fact one of the biggest impediments noted elsewhere in industry is the inability of Agile to scale.  This limitations exists in its most simplistic form because Agile is fine in the development of well-defined limited COTS applications and smartphone applications.  It doesn’t work so well when one is pushing technology while developing software, especially for a complex project involving hundreds of stakeholders.  One other note–the unmentioned emphasis in Agile is technical performance measurement, since progress is based on satisfying customer requirements.  TPM, when placed in the context of a world of limited resources, is the best measure of all.

b.  The integration of new technology into PM and how to upload the existing PM corporate knowledge into that technology.

This is two sides of the same coin.  There is always  debate about the introduction of new technologies within an organization and this debate places in stark contrast the differences between risk aversion and risk management.

Project managers, especially in the complex project management environment of aerospace & defense tend, in general, to be a hardy lot.  Consisting mostly of engineers they love to push the envelope on technology development.  But there is also a stripe of engineers among them that do not apply this same approach of measured risk to their project management and business analysis system.  When it comes to tracking progress, resource management, programmatic risk, and accountability they frequently enter the risk aversion mode–believing that the less eyes on what they do the more leeway they have in achieving the technical milestones.  No doubt this is true in a world of unlimited time and resources, but that is not the world in which we live.

Aside from sub-optimized self-interest, the seeds of risk aversion come from the fact that many of the disciplines developed around performance management originated in the financial management community, and many organizations still come at project management efforts from perspective of the CFO organization.  Such rice bowl mentality, however, works against both the project and the organization.

Much has been made of the wall of honor for those CIA officers that have given their lives for their country, which lies to the right of the Langley headquarters entrance.  What has not gotten as much publicity is the verse inscribed on the wall to the left:

“And ye shall know the truth and the truth shall make you free.”

      John VIII-XXXII

In many ways those of us in the project management community apply this creed to the best of our ability to our day-to-day jobs, and it lies as the basis for all of the management improvement from Deming’s concept of continuous process improvement, through the application of Six Sigma and other management improvement methods.  What is not part of this concept is that one will apply improvement only when a customer demands it, though they have asked politely for some time.  The more information we have about what is happening in our systems, the better the project manager and the project team is armed with applying the expertise which qualified the individuals for their jobs to begin with.

When it comes to continual process improvement one does not need to wait to apply those technologies that will improve project management systems.  As a senior management (and well-respected engineer) when I worked in Navy told me; “if my program managers are doing their job virtually every element should be in the yellow, for only then do I know that they are managing risk and pushing the technology.”

But there are some practical issues that all managers must consider when managing the risks in introducing new technology and determining how to bring that technology into existing business systems without completely disrupting the organization.  This takes–good project management practices that, for information systems, includes good initial systems analysis, identification of those small portions of the organization ripe for initial entry in piloting, and a plan of data normalization and rationalization so that corporate knowledge is not lost.  Adopting systems that support more open systems that militate against proprietary barriers also helps.

c.  The intersection of project management and business analysis and its effects.

As data becomes more transparent through methods of normalization and rationalization–and the focus shifts from “tools” to the knowledge that can be derived from data–the clear separation that delineated project management from business analysis in line-and-staff organization becomes further blurred.  Even within the project management discipline, the separation in categorization of schedule analysts from cost analysts from financial analyst are becoming impediments in fully exploiting the advantages in looking at all data that is captured and which affects project performance.

d.  The manner of handling Big Data, business intelligence, and analytics that result.

Software technologies are rapidly developing that break the barriers of self-contained applications that perform one or two focused operations or a highly restricted group of operations that provide functionality focused on a single or limited set of business processes through high level languages that are hard-coded.  These new technologies, as stated in the previous section, allow users to focus on access to data, making the interface between the user and the application highly adaptable and customizable.  As these technologies are deployed against larger datasets that allow for integration of data across traditional line-and-staff organizations, they will provide insight that will garner businesses competitive advantages and productivity gains against their contemporaries.  Because of these technologies, highly labor-intensive data mining and data engineering projects that were thought to be necessary to access Big Data will find themselves displaced as their cost and lack of agility is exposed.  Internal or contracted out custom software development devoted along these same lines will also be displaced just as COTS has displaced the high overhead associated with these efforts in other areas.  This is due to the fact that hardware and processes developments are constantly shifting the definition of “Big Data” to larger and larger datasets to the point where the term will soon have no practical meaning.

e.  The role of the SME given all of the above.

The result of the trends regarding technology will be to put the subject matter expert back into the driver’s seat.  Given adaptive technology and data–and a redefinition of the analyst’s role to a more expansive one–we will find that the ability to meet the needs of functionality and the user experience is almost immediate.  Thus, when it comes to business and project management systems, the role of Agile, while these developments reinforce the characteristics that I outlined above are made real, the weakness of its applicability to more complex and technical projects is also revealed.  It is technology that will reduce the risk associated with contract negotiation, processes, documentation, and planning.  Walking away from these necessary components to project management obfuscates and avoids the hard facts that oftentimes must be addressed.

One final item that Mr. Qureshi mentions in a follow-up post–and which I have seen elsewhere in similar forums–concerns operational security.  In deployment of new technologies a gatekeeper must be aware of whether that technology will not open the organization’s corporate knowledge to compromise.  Given the greater and more integrated information and knowledge garnered by new technology, as good managers it is incumbent to ensure these improvements do not translate into undermining the organization.