Shake it Out – Embracing the Future of Program Management – Part Two: Private Industry Program and Project Management in Aerospace, Space, and Defense

In my previous post, I focused on Program and Project Management in the Public Interest, and the characteristics of its environment, especially from the perspective of the government program and acquisition disciplines. The purpose of this exploration is to lay the groundwork for understanding the future of program management—and the resulting technological and organizational challenges that are required to support that change.

The next part of this exploration is to define the motivations, characteristics, and disciplines of private industry equivalencies. Here there are commonalities, but also significant differences, that relate to the relationship and interplay between public investment, policy and acquisition, and private business interests.

Consistent with our initial focus on public interest project and program management (PPM), the vertical with the greatest relationship to it is found in the very specialized fields of aerospace, space, and defense. I will therefore first begin with this industry vertical.

Private Industry Program and Project Management

Aerospace, Space & Defense (ASD). It is here that we find commercial practice that comes closest to the types of structure, rules, and disciplines found in public interest PPM. As a result, it is also here where we find the most interesting areas of conflict and conciliation between private motivations and public needs and duties. Particularly since most of the business activity in this vertical is generated by and dependent on federal government acquisition strategy and policy.

On the defense side, the antecedent policy documents guiding acquisition and other measures are the National Security Strategy (NSS), which is produced by the President’s staff, the National Defense Strategy (NDS), which further translates and refines the NSS, and the National Military Strategy (NMS), which is delivered to the Secretary of Defense by the Joint Chiefs of Staff of the various military services, which is designed to provide unfettered military advise to the Secretary of Defense.

Note that the U.S. Department of Defense (DoD) and the related agencies, including the intelligence agencies, operate under a strict chain of command that ensures civilian control under the National Military Establishment. Aside from these structures, the documents and resulting legislation from DoD actions also impact such civilian agencies as the Department of Energy (DOE), Department of Homeland Security (DHS), the National Aeronautics and Space Administration (NASA), and the Federal Aviation Administration (FAA), among others.

The countervailing power and checks-and-balances on this Executive Branch power lies with the appropriation and oversight powers of the Congress. Until the various policies are funded and authorized by Congress, the general tenor of military, intelligence, and other operations have tangential, though not insignificant effects, on the private economy. Still, in terms of affecting how programs and projects are monitored, it is within the appropriation and authorization bills that we find the locus of power. As one of my program managers reminded me during my first round through the budget hearing process, “everyone talks, but money walks.”

On the Aerospace side, there are two main markets. One is related to commercial aircraft, parts, and engines sold to the various world airlines. The other is related to government’s role in non-defense research and development, as well as activities related to private-public partnerships, such as those related to space exploration. The individual civilian departments of government also publish their own strategic plans based on their roles, from which acquisition strategy follows. These long terms strategic plans, usually revised at least every five years, are then further refined into strategic implementation plans by various labs and directorates.

The suppliers and developers of the products and services for government, which represents the bulk of ASD, face many of the same challenges delineated in surveying their government counterparts. The difference, of course, is that these are private entities where the obligations and resulting mores are derived from business practice and contractual obligations and specifications.

This is not to imply a lack of commitment or dedication on the part of private entities. But it is an important distinction, particularly since financial incentives and self-interest are paramount considerations. A contract negotiator, for example, in order to be effective, must understand the underlying pressures and relative position of each of the competitors in the market being addressed. This individual should also be familiar with the particular core technical competencies of the competitors as well as their own strategic plans, the financial positions and goals that they share with their shareholders in the case of publicly traded corporations, and whether actual competition exists.

The Structure of the Market. Given the mergers and acquisitions of the last 30 years, along with the consolidation promoted by the Department of Defense as unofficial policy after the fall of the Berlin Wall and the lapse of antitrust enforcement, the portion of ASD and Space that rely on direct government funding, even those that participate in public-private ventures where risk sharing is involved, operate in a monopsony—the condition in which a single buyer—the U.S. government—substantially controls the market as the main purchaser of supplies and services. This monopsony market is then served by a supplier market that is largely an oligopoly—where there are few suppliers and limited competition—and where, in some technical domains, some suppliers exert monopoly power.

Acknowledging this condition informs us regarding the operational motivators of this market segment in relation to culture, practice, and the disciplines and professions employed.

In the first case, given the position of the U.S. government, the normal pressures of market competition and market incentives do not apply to the few competitors participating in the market. As a result, only the main buyer has the power to recreate, in an artificial manner, an environment which replicate the market incentives and penalties normally employed in a normative, highly diverse and competitive market.

Along these lines, for market incentives, the government can, and often does, act as the angel investor, given the rigorous need for R&D in such efforts. It can also lower the barriers to participation in order to encourage more competition and innovation. This can be deployed across the entire range of limited competitors, or it can be expansive in its approach to invite new participants.

Market penalties that are recreated in this environment usually target what economists call “rent-seeking behavior.” This is a situation where there may be incumbents that seek to increase their own wealth without creating new benefits, innovation, or providing additional wealth to society. Lobbying, glad-handing, cronyism, and other methods are employed and, oftentimes, rampant under monosponistic systems. Revolving-door practices, in which the former government official responsible for oversight obtains employment in the same industry and, oftentimes, with the same company, is too often seen in these cases.

Where there are few competitors, market participants will often play follow-the-leader and align themselves to dominate particular segments of the market in appealing to the government or elected representatives for business. This may mean that, in many cases, they team with their ostensible competitors to provide a diverse set of expertise from the various areas of specialty. As with any business, profitability is of paramount importance, for without profit there can be no business operations. It is here: the maximization of profit and shareholder value, that is the locus of power in understanding the motivation of these and most businesses.

This is not a value judgment. As faulty and risky as this system may be, no better business structure has been found to provide value to the public through incentives for productive work, innovation, the satisfaction of demand, and efficiency. The challenge, apart from what political leadership decides to do regarding the rules of the market, is to make those rules that do exist work in the public interest through fair, ethical, and open contracting practices.

To do this successfully requires contracting and negotiating expertise. To many executives and non-contracting personnel, negotiations appear to be a zero-sum game. No doubt, popular culture, mass media and movies, and self-promoting business people help mold this perception. Those from the legal profession, in particular, deal with a negotiation as an extension of the adversarial processes through which they usually operate. This is understandable given their education, and usually disastrous.

As an attorney friend of mine once observed: “My job, if I have done it right, is to ensure that everyone walking out of the room is in some way unhappy. Your job, in contrast, is to ensure that everyone walking out of it is happy.” While a generalization—and told tongue-in-cheek—it highlights the core difference in approach between these competing perspectives.

A good negotiator has learned that, given two motivated sides coming together to form a contract, that there is an area of intersection where both parties will view the deal being struck as meeting their goals, and as such, fair and reasonable. It is the job of the negotiator to find that area of mutual fairness, while also ensuring that the contract is clear and free of ambiguity, and that the structure of the instrument—price and/or cost, delivery, technical specification, statement of work or performance specification, key performance parameters, measures of performance, measures of effectiveness, management, sufficiency of capability (responsibility), and expertise—sets up the parties involved for success. A bad contract can no more be made good than the poorly prepared and compacted soil and foundation of a house be made good after the building goes up.

The purpose of a good contract is to avoid litigation, not to increase the likelihood of it happening. Furthermore, it serves the interests of neither side to obtain a product or service at a price, or under such onerous conditions, where the enterprise fails to survive. Alternatively, it does a supplier little good to obtain a contract that provides the customer with little financial flexibility, that fails to fully deliver on its commitments, that adversely affects its reputation, or that is perceived in a negative light by the public.

Effective negotiators on both sides of the table are aware of these risks and hazards, and so each is responsible for the final result, though often the power dynamic between the parties may be asymmetrical, depending on the specific situation. It is one of the few cases in which parties having both mutual and competing interests are brought together where each side is responsible for ensuring that the other does not hazard their organization. It is in this way that a contract—specifically one that consists of a long-term R&D cost-plus contract—is much like a partnership. Both parties must act in good faith to ensure the success of the project—all other considerations aside—once the contract is signed.

In this way, the manner of negotiating and executing contracts is very much a microcosm of civil society as a whole, for good or for bad, depending on the practices employed.

Given that the structure of aerospace, space, and defense consists of one dominant buyer with few major suppliers, the disciplines required relate to the details of the contract and its resulting requirements that establish the rules of governance.

As I outlined in my previous post, the characteristics of program and project management in the public interest, which are the products of contract management, are focused on successfully developing and obtaining a product to meet particular goals of the public under law, practice, and other delineated specific characteristics.

As a result, the skill-sets that are of paramount importance to business in this market prior to contract award are cost estimating, applied engineering expertise including systems engineering, financial management, contract negotiation, and law. The remainder of disciplines regarding project and program management expertise follow based on what has been established in the contract and the amount of leeway the contracting instrument provides in terms of risk management, cost recovery, and profit maximization, but the main difference is that this approach to the project leans more toward contract management.

Another consideration in which domains are brought to bear relates to position of the business in terms of market share and level of dominance in a particular segment of the market. For example, a company may decide to allow a lower than desired target profit. In the most extreme cases, the company may allow the contract to become a loss leader in order to continue to dominate a core competency or to prevent new entries into that portion of the market.

On the other side of the table, government negotiators are prohibited by the Federal Acquisition Regulation (the FAR) from allowing companies to “buy-in” by proposing an obviously lowball offer, but some do in any event, whether it is due to lack of expertise or bowing to the exigencies of price or cost. This last condition, combined with rent-seeking behavior mentioned earlier, where they occur, will distort and undermine the practices and indicators needed for effective project and program management. In these cases, the dysfunctional result is to create incentives to maximize revenue and scope through change orders, contracting language ambiguity, and price inelasticity. This also creates an environment that is resistant to innovation and rewards inefficiency.

But apart from these exceptions, the contract and its provisions, requirements, and type are what determine the structure of the eventual project or program management team. Unlike the commercial markets in which there are many competitors, the government through negotiation will determine the manner of burdening rate structures and allowable profit or margin. This last figure is determined by the contract type and the perceived risk of the contract goals to the contractor. The higher the risk, the higher the allowed margin or profit. The reverse applies as well.

Given this basis, the interplay between private entities and the public acquisition organizations, including the policy-setting staffs, are also of primary concern. Decision-makers, influences, and subject-matter experts from these entities participate together in what are ostensibly professional organizations, such as the National Defense Industrial Association (NDIA), the Project Management Institute (PMI), the College of Scheduling (CoS), the College of Performance Management (CPM), the International Council on Systems Engineering (INCOSE), the National Contract Management Association (NCMA), and the International Cost Estimating and Analysis Association (ICEAA), among the most frequently attended by these groups. Corresponding and associated private and professional groups are the Project Control Academy and the Association for Computing Machinery (ACM).

This list is by no means exhaustive, but from the perspective of suppliers to public agencies, NDIA, PMI, CoS, and CPM are of particular interest because much of the business of influencing policy and the details of its application are accomplished here. In this manner, the interests of the participants from the corporate side of the equation relate to those areas always of concern: business certainty, minimization of oversight, market and government influence. The market for several years now has been reactive, not proactive.

There is no doubt that business organizations from local Chambers of Commerce to specialized trade groups that bring with them the advantages of finding mutual interests and synergy. All also come with the ills and dysfunction, to varying degrees, borne from self-promotion, glad-handing, back-scratching, and ossification.

In groups where there is little appetite to upend the status quo, innovation and change, is viewed with suspicion and as being risky. In such cases the standard reaction is cognitive dissonance. At least until measures can be taken to subsume or control the pace and nature of the change. This is particularly true in the area of project and program management in general and integrated project, program and portfolio management (IPPM), in particular.

Absent the appetite on the part of DoD to replicate market forces that drive the acceptance of innovative IPPM approaches, one large event and various evolutionary aviation and space technology trends have upended the ecosystem of rent-seeking, reaction, and incumbents bent on maintaining the status quo.

The one large event, of course, came about from the changes wrought by the Covid pandemic. The other, evolutionary changes, are a result of the acceleration of software technology in capturing and transforming big(ger) dataset combined with open business intelligence systems that can be flexibly delivered locally and via the Cloud.

I also predict that these changes will make hard-coded, purpose-driven niche applications obsolete within the next five years, as well as those companies that have built their businesses around delivering custom, niche applications, and MS Excel spreadsheets, and those core companies that are comfortable suboptimizing and reacting to delivering the letter, if not the spirit, of good business practice expected under their contracts.

Walking hand-in-hand with these technological and business developments, the business of the aerospace, space and defense market, in general, is facing a window opening for new entries and greater competition borne of emergent engineering and technological exigencies that demand innovation and new approaches to old, persistent problems.

The coronavirus pandemic and new challenges from the realities of global competition, global warming, geopolitical rivalries; aviation, space and atmospheric science; and the revolution in data capture, transformation, and optimization are upending a period of quiescence and retrenchment in the market. These factors are moving the urgency of innovation and change to the left both rapidly and in a disruptive manner that will only accelerate after the immediate pandemic crisis passes.

In my studies of Toynbee and other historians (outside of my day job, I am also credentialed in political science and history, among other disciplines, through both undergraduate and graduate education), I have observed that societies and cultures that do not embrace the future and confront their challenges effectively, and that do not do so in a constructive manner, find themselves overrun by it and them. History is the chronicle of human frailty, tragedy, and failure interspersed by amazing periods of resilience, human flourishing, advancement, and hope.

As it relates to our more prosaic concerns, Deloitte has published an insightful paper on the 2021 industry outlook. Among the identified short-term developments are:

  1. A slow recovery in passenger travel may impact aircraft deliveries and industry revenues in commercial aviation,
  2. The defense sector will remain stable as countries plan to sustain their military capabilities,
  3. Satellite broadband, space exploration and militarization will drive growth,
  4. Industry will shift to transforming supply chains into more resilient and dynamic networks,
  5. Merger and acquisitions are likely to recover in 2021 as a hedge toward ensuring long-term growth and market share.

More importantly, the longer-term changes to the industry are being driven by the following technological and market changes:

  • Advanced aerial mobility (AAM). Both FAA and NASA are making investments in this area, and so the opening exists for new entries into the market, including new entries in the supply chain, that will disrupt the giants (absent a permissive M&A stance under the new Administration in Washington). AAM is the new paradigm to introduce safe, short-distance, daily-commute flying technologies using vertical lift.
  • Hypersonics. Given the touted investment of Russia and China into this technology as a means of leveraging against the power projection of U.S. forces, particularly its Navy and carrier battle groups (aside from the apparent fact that Vladimir Putin, the president of Upper Volta with Missiles and Hackers, really hates Disney World), the DoD is projected to fast-track hypersonic capabilities and countermeasures.
  • Electric propulsion. NASA is investing in cost-sharing capabilities to leverage electric propulsion technologies, looking to benefit from the start-up growth in this sector. This is an exciting development which has the potential to transform the entire industry over the next decade and after.
  • Hydrogen-powered aircraft. OEMs are continuing to pour private investment money into start-ups looking to introduce more fuel-efficient and clean energy alternatives. As with electric propulsion, there are prototypes of these aircraft being produced and as public investments into cost-sharing and market-investment strategies take hold, the U.S., Europe, and Asia are looking at a more diverse and innovative aerospace, space, and defense market.

Given the present condition of the industry, and the emerging technological developments and resulting transformation of flight, propulsion, and fuel sources, the concept and definitions used in project and program management require a revision to meet the exigencies of the new market.

For both industry and government, in order to address these new developments, I believe that a new language is necessary, as well as a complete revision to what is considered to be the acceptable baseline of best business practice and the art of the possible. Only then will organizations and companies be positioned to address the challenges these new forms of investment and partnering systems will raise.

The New Language of Integrated Program, Project, and Portfolio Management (IPPM).

First a digression to the past: while I was on active duty in the Navy, near the end of my career, I was assigned to the staff of the Office of the Undersecretary of Defense for Acquisition and Technology (OUSD(A&T)). Ostensibly, my assignment was to give me a place to transition from the Service. Thus, I followed the senior executive, who was PEO(A) at NAVAIR, to the Pentagon, simultaneously with the transition of NAVAIR to Patuxent River, Maryland. In reality, I had been tasked by the senior executive, Mr. Dan Czelusniak, to explore and achieve three goals:

  1. To develop a common schema by supporting an existing contract for the collection of data from DoD suppliers from cost-plus R&D contracts with the goal in mind of creating a master historical database of contract performance and technological development risk. This schema would first be directed to cost performance, or EVM;
  2. To continue to develop a language, methodology, and standard, first started and funded by NAVAIR, for the integration of systems engineering and technical performance management into the program management business rhythm;
  3. To create and define a definition of Integrated Program Management.

I largely achieved the first two during my relatively brief period there.

The first became known and the Integrated Digital Environment (IDE), which was refined and fully implemented after my departure from the Service. Much of this work is the basis for data capture, transformation, and load (ETL) today. There had already been a good deal of work by private individuals, organizations, and other governments in establishing common schemas, which were first applied to the transportation and shipping industries. But the team of individuals I worked with were able to set the bar for what followed across datasets.

The second was completed and turned over to the Services and federal agencies, many of whom adopted the initial approach, and refined it as well to inform, through the identification of technical risk, cost performance and technical achievement. Much of this knowledge already existed in the Systems Engineering community, but working with INCOSE, a group of like-minded individuals were able to take the work from the proof-of-concept, which was awarded the Acker in Skill in Communication award at the DAU Acquisition Research Symposium, and turn it into the TPM and KPP standard used by organizations today.

The third began with establishing my position, which hadn’t existed until my arrival: Lead Action Officer, Integrated Program Management. Gary Christle, who was the senior executive in charge of the staff, asked me “What is Integrated Program Management?” I responded: “I don’t know, sir, but I intend to find out.” Unfortunately, this is the initiative that has still eluded both industry and government, but not without some advancement.

Note that this position with its charter to define IPM was created over 24 years ago—about the same time it takes, apparently, to produce an operational fighter jet. I note this with no flippancy, for I believe that the connection is more than just coincidental.

When spoken of, IPM and IPPM are oftentimes restricted to the concept of cost (read cost performance or EVM) and schedule integration, with aggregated portfolio organization across a selected number of projects thrown in, in the latter case. That was considered advancement in 1997. But today, we seem to be stuck in time. In light of present technology and capabilities, this is a self-limiting concept.

This concept is technologically supported by a neutral schema that is authored and managed by DoD. While essential to data capture and transformation—and because of this fact—it is currently the target by incumbents as a means of further limiting even this self-limited definition in practice. It is ironic that a technological advance that supports data-driven in lieu of report-driven information integration is being influenced to support the old paradigm.

The motivations are varied: industry suppliers who aim to restrict access to performance data under project and program management, incumbent technology providers who wish to keep the changes in data capture and transformation restricted to their limited capabilities, consulting companies aligned with technology incumbents, and staff augmentation firms dependent on keeping their customers dependent on custom application development and Excel workbooks. All of these forces work through the various professional organizations which work to influence government policy, hoping to establish themselves as the arbiters of the possible and the acceptable.

Note that oftentimes the requirements under project management are often critiqued under the rubric of government regulation. But that is a misnomer: it is an extension of government contract management. Another critique is made from the perspective of overhead costs. But management costs money, and one would not (or at least should not) drive a car or own a house without insurance and a budget for maintenance, much less a multi-year high-cost project involving the public’s money. In addition, as I have written previously which is supported by the literature, data-driven systems actually reduce costs and overhead.

All of these factors contribute to ossification, and impose artificial blinders that, absent reform, will undermine meeting the new paradigms of 21st Century project management, given that the limited concept of IPM was obviously insufficient to address the challenges of the transitional decade that broached the last century.

Embracing the Future in Aerospace, Space, and Defense

As indicated, the aerospace and space science and technology verticals are entering a new and exciting phase of technological innovation resulting from investments in start-ups and R&D, including public-private cost-sharing arrangements.

  1. IPM to Project Life-Cycle Management. Given the baggage that attends the acronym IPM, and the worldwide trend to data-driven decision-making, it is time to adjust the language of project and program management to align to it. In lieu of IPM, I suggest Project Life-Cycle Management to define the approach to project and program data and information management.
  2. Functionality-Driven to Data-Driven Applications. Our software, systems and procedures must be able to support that infrastructure and be similarly in alignment with that manner of thinking. This evolution includes the following attributes:
    • Data Agnosticism. As our decision-making methods expand to include a wider, deeper, and more comprehensive interdisciplinary approach, our underlying systems must be able to access data in this same manner. As such, these systems must be data agnostic.
    • Data neutrality. In order to optimize access to data, the overhead and effort needed to access data must be greatly reduced. Using data science and analysis to restructure pre-conditioned data in order to overcome proprietary lexicons—an approach used for business intelligence systems since the 1980s—provides no added value to either the data or the organization. If data access is ad hoc and customized in every implementation, the value of the effort cannot either persist, nor is the return on investment fully realized. It backs the customer into a corner in terms of flexibility and innovation. Thus, pre-configured data capture, extract, transformation, and load (ETL) into a non-proprietary and objective format, which applies to all data types used in project and program management systems, is essential to providing the basis for a knowledge-based environment that encourages discovery from data. This approach in ETL is enhanced by the utilization of neutral data schemas.
    • Data in Lieu of Reporting and Visualization. No doubt that data must be visualized at some point—preferably after its transformation and load into the database with other, interrelated data elements that illuminate information to enhance the knowledge of the decisionmaker. This implies that systems that rely on physical report formats, charts, and graphs as the goal are not in alignment with the new paradigm. Where Excel spreadsheets and PowerPoint are used as a management system, it is the preparer is providing the interpretation, in a manner that predisposes the possible alternatives of interpretation. The goal, instead, is to have data speak for itself. It is the data, transformed into information, interrelated and contextualized to create intelligence that is the goal.
    • All of the Data, All of the Time. The cost of 1TB of data compared to 1MB of data is the marginal cost of the additional electrons to produce it. Our systems must be able to capture all of the data essential to effective decision-making in the periodicity determined by the nature of the data. Thus, our software systems must be able to relate data at all levels and to scale from simplistic datasets to extremely large ones. It should do so in such a way that the option for determining what, among the full menu of data options available, is relevant rests in the consumer of that data.
    • Open Systems. Software solution providers beginning with the introduction of widespread CPU capability have manufactured software to perform particular functions based on particular disciplines and very specific capabilities. As noted earlier, these software applications are functionality-focused and proprietary in structure, method, and data. For data-driven project and program requirements, software systems must be flexible enough to accommodate a wide range of analytical and visualization demands in allowing the data to determine the rules of engagement. This implies systems that are open in two ways: data agnosticism, as already noted, but also open in terms of the user environment.
    • Flexible Application Configuration. Our systems must be able to address the needs of the various disciplines in their details, while also allowing for integration and contextualization of interrelated data across domains. As with Open Systems to data and the user environment, openness through the ability to roll out multiple specialized applications from a common platform places the subject matter expert and program manager in the driver’s seat in terms of data analysis and visualization. An effective open platform also reduces the overhead associated with limited purpose-driven, disconnected and proprietary niche applications.
    • No-Code/Low-Code. Given that data and the consumer will determine both the source and method of delivery, our open systems should provide an environment that supports Agile development and deployment of customization and new requirements.
    • Knowledge-Based Content. Given the extensive amount of experience and education recorded and documented in the literature, our systems must, at the very least, provide a baseline of predictive analytics and visualization methods usually found in the more limited, purpose-built hardcoded applications, if not more expansive. This knowledge-based content, however, must be easily expandable and refinable, given the other attributes of openness, flexibility, and application configuration. In this manner, our 21st century project and program management systems must possess the attributes of a hybrid system: providing the functionality of the traditional niche systems with the flexibility and power of a business intelligence system enhanced by COTS data capture and transformation.
    • Ease of Use. The flexibility and power of these systems must be such that implementation and deployment are rapid, and that new user environment applications can be quickly deployed. Furthermore, the end user should be able to determine the level of complexity or simplicity of the environment to support ease of use.
  1. Focus on the Earliest Indicator. A good deal of effort since the late 1990s has been expended on defining the highest level of summary data that is sufficient to inform earned value, with schedule integration derived from the WBS, oftentimes summarized on a one-to-many basis as well. This perspective is biased toward believing that cost performance is the basis for determining project control and performance. But even when related to cost, the focus is backwards. The project lifecycle in its optimized form exists of the following progression:

    Project Goals and Contract (framing assumptions) –> Systems Engineering, CDRLs, KPPs, MoEs, MoPs, TPMs –> Project Estimate –> Project Plan –> IMS –> Risk and Uncertainty Analysis –> Financial Planning and Execution –> PMB –> EVM

    As I’ve documented in this blog over the years, DoD studies have shown that, while greater detail within the EVM data may not garner greater early warning, proper integration with the schedule at the work package level does. Program variances first appear in the IMS. A good IMS, thus, is key to collecting and acting as the main execution document. This is why many program managers who are largely absent in the last decade or so from the professional organizations listed, tend to assert that EVM is like “looking in the rearview mirror.” It isn’t that it is not essential, but it is true that it is not the earliest indicator of variances from expected baseline project performance.

    Thus, the emphasis going forward under this new paradigm is not to continue the emphasis and a central role for EVM, but a shift to the earliest indicator for each aspect of the program that defines its framing assumptions.
  1. Systems Engineering: It’s not Space Science, it’s Space Engineering, which is harder.
    The focus on start-up financing and developmental cost-sharing shifts the focus to systems engineering configuration control and technical performance indicators. The emphasis on meeting expectations, program goals, and achieving milestones within the cost share make it essential to be able to identify fatal variances, long before conventional cost performance indicators show variances. The concern of the program manager in these cases isn’t so much on the estimate at complete, but whether the industry partner will be able to deploy the technology within the acceptable range of the MoEs, MoPs, TPPs, and KPPs, and not exceed the government’s portion of the cost share. Thus, the incentive is to not only identify variances and unacceptable risk at the earliest indicator, but to do so in terms of whether the end-item technology will be successfully deployed, or whether the government should cut its losses.
  1. Risk and Uncertainty is more than SRA. The late 20th century approach to risk management is to run a simulated Monte Carlo analysis against the schedule, and to identify alternative critical paths and any unacceptable risks within the critical path. This is known as the schedule risk analysis, or SRA. While valuable, the ratio of personnel engaged in risk management is much smaller than the staffs devoted to schedule and cost analysis.

    This is no doubt due to the specialized language and techniques devoted to risk and uncertainty. This segregation of risk from mainstream project and program analysis has severely restricted both the utility and the real-world impact of risk analysis on program management decision-making.

    But risk and uncertainty extend beyond the schedule risk analysis, and their utility in an environment of aggressive investment in new technology, innovation, and new entries to the market will place these assessments at center stage. In reality, our ability to apply risk analysis techniques extends to the project plan, to technical performance indicators, to estimating, to the integrated master schedule (IMS), and to cost, both financial and from an earned value perspective. Combined with the need to identify risk and major variances using the earliest indicator, risk analysis becomes pivotal to mainstream program analysis and decision-making.

Conclusions from Part Two

The ASD industry is most closely aligned with PPM in the public interest. Two overarching trends that are transforming this market that are overcoming the inertia and ossification of PPM thought are the communications and information systems employed in response to the coronavirus pandemic, which opened pathways to new ways of thinking about the status quo, and the start-ups and new entries into the ASD market, borne from the investments in new technologies arising from external market, geo-political, space science, global warming, and propulsion trends, as well as new technologies and methods being employed in data and information technology that drive greater efficiency and productivity. These changes have forced a new language and new expectations as to the art of the necessary, as well as the art of the possible, for PPM. This new language includes a transition to the concept of the optimal capture and use of all data across the program management life cycle with greater emphasis on systems engineering, technical performance, and risk.

Having summarized the new program paradigm in Aerospace, Space, and Defense, my next post will assess the characteristics of program management in various commercial industries, the rising trends in these verticals, and what that means for the project and program management discipline.

Open: Strategic Planning, Open Data Systems, and the Section 809 Panel

Sundays are usually days reserved for music and the group Rhye was playing in the background when this topic came to mind.

I have been preparing for my presentation in collaboration with my Navy colleague John Collins for the upcoming Integrated Program Management Workshop in Baltimore. This presentation will be a non-proprietary/non-commercial talk about understanding the issue of unlocking data to support national defense systems, but the topic has broader interest.

Thus, in advance of that formal presentation in Baltimore, there are issues and principles that are useful to cover, given that data capture and its processing, delivery, and use is at the heart of all systems in government, and private industry and organizations.

Top Data Trends in Industry and Their Relationship to Open Data Systems

According to Shohreh Gorbhani, Director, Project Control Academy, the top five data trends being pursued by private industry and technology companies. My own comments follow as they relate to open data systems.

  1. Open Technologies that transition from 2D Program Management to 3D and 4D PM. This point is consistent with the College of Performance Management’s emphasis on IPM, but note that the stipulation is the use of open technologies. This is an important distinction technologically, and one that I will explore further in this post.
  2. Real-time Data Capture. This means capturing data in the moment so that the status of our systems is up-to-date without the present delays associated with manual data management and conditioning. This does not preclude the collection of structured, periodic data, but also does include the capture of transactions from real-time integrated systems where appropriate.
  3. Seamless Data Flow Integration. From the perspective of companies in manufacturing and consumer products, technologies such as IoT and Cloud are just now coming into play. But, given the underlying premises of items 1 and 2, this also means the proper automated contextualization of data using an open technology approach that flows in such a way as to be traceable.
  4. The use of Big Data. The term has lost a good deal of its meaning because of its transformation into a buzz-phrase and marketing term. But Big Data refers to the expansion in the depth and breadth of available data driven by the economic forces that drive Moore’s Law. What this means is that we are entering a new frontier of data processing and analysis that will, no doubt, break down assumptions regarding the validity and strength of certain predictive analytics. The old assumptions that restrict access to data due to limitations of technology and higher cost no longer apply. We are now in the age of Knowledge Discovery in Data (KDD). The old approach of reporting assumed that we already know what we need to know. The use of data challenges old assumptions and allows us to follow the data where it will lead us.
  5. AI Forecasting and Analysis. No doubt predictive AI will be important as we move forward with machine learning and other similar technologies. But this infant is not yet a rug rat. The initial experiences with AI are that they tend to reflect the biases of the creators. The danger here is that this defeats KDD, which results in stagnation and fugue. But there are other areas where AI can be taught to automate mundane, value-neutral tasks relating to raw data interpretation.

The 809 Panel Recommendation

The fact that industry is the driving force behind these trends that will transform the way that we view information in our day-to-day work, it is not surprising that the 809 Panel had this to say about existing defense business systems:

“Use existing defense business system open-data requirements to improve strategic decision making on acquisition and workforce issues…. DoD has spent billions of dollars building the necessary software and institutional infrastructure to collect enterprise wide acquisition and financial data. In many cases, however, DoD lacks the expertise to effectively use that data for strategic planning and to improve decision making. Recommendation 88 would mitigate this problem by implementing congressional open-data mandates and using existing hiring authorities to bolster DoD’s pool of data science professionals.”

Section 809 Volume 3, Section 9, p. 477

At one point in my military career, I was assigned as the Materiel, Fuels, and Transportation Officer of Naval Air Station, Norfolk. As a major naval air base, transportation hub, and home to a Naval Aviation Depot, we shipped and received materiel and supplies across the world. In doing so, our transportation personnel would use what at the time was new digital technology to complete an electronic bill of lading that specified what and when items were being shipped, the common or military carrier, the intended recipient, and the estimated date of arrival, among other essential information.

The customer and receiving end of this workflow received an open systems data file that contained these particulars. The file was an early version of open data known as an X12 file, for which the commercial transportation industry was an early adopter. Shipping and receiving activities and businesses used their own type of local software: and there were a number of customized and commercial choices out there, as well as those used by common carriers such various trucking and shipping firms, the USPS, FEDEX, DHS, UPS, and others. The X12 file was the DMZ that made the information open. Software manufacturers, if they wanted to stay relevant in the market, could not impose a proprietary data solution.

Furthermore, standardization of terminology and concepts ensured that the information was readable and comprehensible wherever the items landed–whether across receiving offices in the United States, Japan, Europe, or even Istanbul. Understanding that DoD needs the skillsets to be able to optimize data, it didn’t require an army of data scientists to achieve this end-state. It required the right data science expertise in the right places, and the dictates of transportation consumers to move the technology market to provide the solution.

Over the years both industry and government have developed a number of schema standards focused on specific types of data, progressing from X12 to XML and now projected to use JSON-based schemas. Each of them in their initial iterations automated the submission of physical reports that had been required by either by contract or operations. These focused on a small subset of the full dataset relating to program management and project controls.

This progression made sense.

When digitized technology is first introduced into an intensive direct-labor environment, the initial focus is to automate the production of artifacts and their underlying processes in order to phase in the technology’s acceptance. This also allows the organization to realize immediate returns on investment and improvements in productivity. But this is the first step, not the final one.

Currently for project controls the current state is the UN/CEFACT XML for program performance management data, and the contract cost and labor data collection file known as the FlexFile. Clearly the latter file, given that the recipient is the Office of the Secretary of Defense Cost Assessment and Program Evaluation (OSD CAPE), establish it as one of many feedback loops that support that office’s role in coordinating the planning, programming, budgeting, and evaluation (PPBE) system related to military strategic investments and budgeting, but only one. The program performance information is also a vital part of the PPBE process in evaluation and in future planning.

For most of the U.S. economy, market forces and consumer requirements are the driving force in digital innovation. The trends noted by Ms. Gorbhani can be confirmed through a Google search of any one of the many technology magazines and websites that can be found. The 809 Panel, drawn as it was from specialists and industry and government, were tasked “to provide recommendations that would allow DoD to adapt and deliver capability at market speeds, while ensuring that DoD remains true to its commitment to promote competition, provide transparency in its actions, and maintain the integrity of the defense acquisition system.”

Given that the work of the DoD is unique, creating a type of monopsony, it is up to leadership within the Department to create the conditions and mandates necessary to recreate in microcosm the positive effects of market forces. The DoD also has a very special, vital mission in defending the nation.

When an individual business cobbles together its mission statement it is that mission that defines the necessary elements in data collection that are then essential in making decisions. In today’s world, best commercial sector practice is to establish a Master Data Management (MDM) approach in defining data requirements and practices. In the case of DoD, a similar approach would be beneficial. Concurrent with the period of the 809 Panel’s efforts, RAND Corporation delivered a paper in 2017 (link in the previous sentence) that made recommendations related to data governance that are consistent with the 809 Panel’s recommendations. We will be discussing these specific recommendations in our presentation.

Meeting the mission and readiness are the key components to data governance in DoD. Absent such guidance, specialized software solution providers, in particular, will engage in what is called “rent-seeking” behavior. This is an economic term that means that an “entity (that) seeks to gain added wealth without any reciprocal contribution of productivity.”

No doubt, given the marketing of software solution providers, it is hard for decision-makers to tell what constitutes an open data system. The motivation of a software solution is to make itself as “sticky” as possible and it does that by enticing a customer to commit to proprietary definitions, structures, and database schemas. Usually there are “black-boxed” portions of the software that makes traceability impossible and that complicates the issue of who exactly owns the data and the ability of the customer to optimize it and utilize it as the mission dictates.

Furthermore, data visualization components like dashboards are ubiquitous in the market. A cursory stroll through a tradeshow looks like a dashboard smorgasbord combined with different practical concepts of what constitutes “open” and “integration”.

As one DoD professional recently told me, it is hard to tell the software systems apart. To do this it is necessary to understand what underlies the software. Thus, a proposed honest-broker definition of an open data system is useful and the place to start, given that this is not a notional concept since such systems have been successfully been established.

The Definition of Open Data Systems

Practical experience in implementing open data systems toward the goal of optimizing essential information from our planning, acquisition, financial, and systems engineering systems informs the following proposed definition, which is based on commercial best practice. This proposal is also based on the principle that the customer owns the data.

  1. An open data system is one based on non-proprietary neutral schemas that allow for the effective capture of all essential elements from third-party proprietary and customized software for reporting and integration necessary to support both internal and external stakeholders.
  2. An open data system allows for complete traceability and transparency from the underlying database structure of the third-party software data, through the process of data capture, transformation, and delivery of data in the neutral schema.
  3. An open data system targets the loading of the underlying source data for analysis and use into a neutral database structure that replicates the structure of the neutral schema. This allows for 100% traceability and audit of data elements received through the neutral schema, and ensures that the receiving organization owns the data.

Under this definition, data from its origination to its destination is more easily validated and traced, ensuring quality and fidelity, and establishing confidence in its value. Given these characteristics, integration of data from disparate domains becomes possible. The tracking of conflicting indicators is mitigated, since open system data allows for its effective integration without the bias of proprietary coding or restrictions on data use. Finally, both government and industry will not only establish ownership of their data–a routine principle in commercial business–but also be free to utilize new technologies that optimize the use of that data.

In closing, Gahan Wilson, a cartoonist whose work appeared in National Lampoon, The New Yorker, Playboy, and other magazines recently passed.

When thinking of the barriers to the effective use of data, I came across this cartoon in The New Yorker:

Open Data is the key to effective integration and reporting–to the optimal use of information. Once mandated and achieved, our defense and business systems will be better informed and be able to test and verify assumed knowledge, address risk, and eliminate dogmatic and erroneous conclusions. Open Data is the driver of organizational transformation keyed to the effective understanding and use of information, and all that entails. Finally, Open Data is necessary to the mission and planning systems of both industry and the U.S. Department of Defense.

Both Sides Now — The Value of Data Exploration

Over the last several months I have authored a number of stillborn articles that just did not live up to the standards that I set for this blog site. After all, sometimes we just have nothing important to add to the conversation. In a world dominated by narcissism, it is not necessary to constantly have something to say. Some reflection and consideration are necessary, especially if one is to be as succinct as possible.

A quote ascribed to Woodrow Wilson, which may be apocryphal, though it does appear in two of his biographies, was in response to being lauded by someone for making a number of short, succinct, and informative speeches. When asked how he was able to do this, President Wilson is supposed to have replied:

“It depends. If I am to speak ten minutes, I need a week for preparation; if fifteen minutes, three days; if half an hour, two days; if an hour, I am ready now.”

An undisciplined mind has a lot to say about nothing in particular with varying degrees of fidelity to fact or truth. When in normal conversation we most often free ourselves from the discipline expected for more rigorous thinking. This is not necessarily a bad thing if we are saying nothing of consequence and there are gradations, of course. Even the most disciplined mind gets things wrong. We all need editors and fact checkers.

While I am pulling forth possibly apocryphal quotes, the one most applicable that comes to mind is the comment by Hemingway as told by his deckhand in Key West and Cuba, Arnold Samuelson. Hemingway was supposed to have given this advice to the aspiring writer:

“Don’t get discouraged because there’s a lot of mechanical work to writing. There is, and you can’t get out of it. I rewrote the first part of A Farewell to Arms at least fifty times. You’ve got to work it over. The first draft of anything is shit. When you first start to write you get all the kick and the reader gets none, but after you learn to work it’s your object to convey everything to the reader so that he remembers it not as a story he had read but something that happened to himself.”

Though it deals with fiction, Hemingway’s advice applies to any sort of writing and rhetoric. Dr. Roger Spiller, who more than anyone mentored me as a writer and historian, once told me, “Writing is one of those skills that, with greater knowledge, becomes harder rather than easier.”

As a result of some reflection, over the last few months, I had to revisit the reason for the blog. Thus, this is still its purpose: it is a way to validate ideas and hypotheses with other professionals and interested amateurs in my areas of interest. I try to keep uninformed opinion in check, as all too many blogs turn out to be rants. Thus, a great deal of research goes into each of these posts, most from primary sources and from interactions with practitioners in the field. Opinions and conclusions are my own, and my reasoning for good or bad are exposed for all the world to see and I take responsibility for them.

This being said, part of my recent silence has also been due to my workload in–well–the effort involved in my day job of running a technology company, and in my recent role, since late last summer, as the Managing Editor of the College of Performance Management’s publication known as the Measurable News. Our emphasis in the latter case has been to find new contributions to the literature regarding business analytics and to define the concept of integrated project, program, and portfolio management. Stepping slightly over the line to make a pitch, I recommend anyone interested in contributing to the publication to submit an article. The submission guidelines can be found here.

Both Sides Now: New Perspectives

That out of the way, I recently saw, again on the small screen, the largely underrated movie about Neil Armstrong and the Apollo 11 moon landing, “First Man”, and was struck by this scene:

Unfortunately, the first part of the interview has been edited out of this clip and I cannot find a full scene. When asked “why space” he prefaces his comments by stating that the atmosphere of the earth seems to be so large from the perspective of looking at it from the ground but that, having touched the edge of space previously in his experience as a test pilot of the X15, he learned that it is actually very thin. He then goes on to posit that looking at the earth from space will give us a new perspective. His conclusion to this observation is then provided in the clip.

Armstrong’s words were prophetic in that the space program provided a new perspective and a new way of looking at things that were in front of us the whole time. Our spaceship Earth is a blue dot in a sea of space and, at least for a time, the people of our planet came to understand both our loneliness in space and our interdependence.

Earth from Apollo 8. Photo courtesy of NASA.

 

The impact of the Apollo program resulted in great strides being made in environmental and planetary sciences, geology, cosmology, biology, meteorology, and in day-to-day technology. The immediate effect was to inspire the environmental and human rights movements, among others. All of these advances taken together represent a new revolution in thought equal to that during the initial Enlightenment, one that is not yet finished despite the headwinds of reaction and recidivism.

It’s Life’s Illusions I Recall: Epistemology–Looking at and Engaging with the World

In his book Darwin’s Dangerous Idea, Daniel Dennett posited that what was “dangerous” about Darwinism is that it acts as a “universal acid” that, when touching other concepts and traditions, transforms them in ways that change our world-view. I have accepted this position by Dennett through the convincing argument he makes and the evidence in front of us, and it is true that Darwinism–the insight in the evolution of species over time through natural selection–has transformed our perspective of the world and left the old ways of looking at things both reconstructed and unrecognizable.

In his work, Time’s Arrow, Time’s Cycle, Stephen Jay Gould noted that Darwinism is part of one of the three great reconstructions of human thought that, in quoting Sigmund Freud, where “Humanity…has had to endure from the hand of science…outrages upon its naive self-love.” These outrages include the Copernican revolution that removed the Earth from the center of the universe, Darwinism and the origin of species, including the descent of humanity, and what John McPhee, coined as the concept of “deep time.”

But–and there is a “but”–I would propose that Darwinism and the other great reconstructions noted are but different ingredients of a larger and more broader, though compatible, type of innovation in the way the world is viewed and how it is approached–a more powerful universal acid. That innovation in thought is empiricism.

It is this approach to understanding that eats through the many ills of human existence that lead to self-delusion and folly. Though you may not know it, if you are in the field of information technology or any of the sciences, you are part of this way of viewing and interacting with the world. Married with rational thinking, this epistemology–coming from the perspectives of the astronomical observations of planets and other heavenly bodies by Charles Sanders Peirce, with further refinements by William James and John Dewey, and others have come down to us in what is known as Pragmatism. (Note that the word pragmatism in this context is not the same as the more generally used colloquial form of the word. For this type of reason Peirce preferred the term “pragmaticism”). For an interesting and popular reading of the development of modern thought and the development of Pragmatism written for the general reader I highly recommend the Pulitzer Prize-winning The Metaphysical Club by Louis Menand.

At the core of this form of empiricism is that the collection of data, that is, recording, observing, and documenting the universe and nature as it is will lead us to an understanding of things that we otherwise would not see. In our more mundane systems, such as business systems and organized efforts applying disciplined project and program management techniques and methods, we also can learn more about these complex adaptive systems through the enhanced collection and translation of data.

I Really Don’t Know Clouds At All: Data, Information, Intelligence, and Knowledge

The term “knowledge discovery in data”, or KDD for short, is an aspirational goal and so, in terms of understanding that goal, is a point of departure from the practice information management and science. I’m taking this stance because the technology industry uses terminology that, as with most language, was originally designed to accurately describe a specific phenomenon or set of methods in order to advance knowledge, only to find that that terminology has been watered down to the point where it obfuscates the issues at hand.

As I traveled to locations across the U.S. over the last three months, I found general agreement among IT professionals who are dealing with the issues of “Big Data”, data integration, and the aforementioned KDD of this state of affairs. In almost every case there is hesitation to use this terminology because it has been absconded and abused by mainstream literature, much as physicists rail against the misuse of the concept of relativity by non-scientific domains.

The impact of this confusion in terminology has caused organizations to make decisions where this terminology is employed to describe a nebulous end-state, without the initiators having an idea of the effort or scope. The danger here, of course, is that for every small innovative company out there, there is also a potential Theranos (probably several). For an in-depth understanding of the psychology and double-speak that has infiltrated our industry I highly recommend the HBO documentary, “The Inventor: Out for Blood in Silicon Valley.”

The reason why semantics are important (as they always have been despite the fact that you may have had an associate complain about “only semantics”) is that they describe the world in front of us. If we cloud the meanings of words and the use of language, it undermines the basis of common understanding and reveals the (poor) quality of our thinking. As Dr. Spiller noted, the paradox of writing and in gathering knowledge is that the more you know, the more you realize you do not know, and the harder writing and communicating knowledge becomes, though we must make the effort nonetheless.

Thus KDD is oftentimes not quite the discovery of knowledge in the sense that the term was intended to mean. It is, instead, a discovery of associations that may lead us to knowledge. Knowing this distinction is important because the corollary processes of data mining, machine learning, and the early application of AI in which we find ourselves is really the process of finding associations, correlations, trends, patterns, and probabilities in data that is approached in a manner as if all information is flat, thereby obliterating its context. This is not knowledge.

We can measure the information content of any set of data, but the real unlocked potential in that information content will come with the processing of it that leads to knowledge. To do that requires an underlying model of domain knowledge, an understanding of the different lexicons in any given set of domains, and a Rosetta Stone that provides a roadmap that identifies those elements of the lexicon that are describing the same things across them. It also requires capturing and preserving context.

For example, when I use the chat on my iPhone it attempts to anticipate what I want to write. I am given three choices of words to choose if I want to use this shortcut. In most cases, the iPhone guesses wrong, despite presenting three choices and having at its disposal (at least presumptively) a larger vocabulary than the writer. Oftentimes it seems to take control, assuming that I have misspelled or misidentified a word and chooses the wrong one for me, where my message becomes a nonsense message.

If one were to believe the hype surrounding AI, one would think that there is magic there but, as Arthur C. Clarke noted (known as Clarke’s Third Law): “Any sufficiently advanced technology is indistinguishable from magic.” Familiar with the new technologies as we are, we know that there is no magic there, and also that it is consistently wrong a good deal of the time. But many individuals come to rely upon the technology nonetheless.

Despite the gloss of something new, the long-established methods of epistemology, code-breaking, statistics, and Calculus apply–as do standards of establishing fact and truth. Despite a large set of data, the iPhone is wrong because the iPhone does not understand–does not possess knowledge–to know why it is wrong. As an aside, its dictionary is also missing a good many words.

A Segue and a Conclusion–I Still Haven’t Found What I’m Looking For: Why Data Integration?…and a Proposed Definition of the Bigness of Data

As with the question to Neil Armstrong, so the question on data. And so the answer is the same. When we look at any set of data under a particular structure of a domain, the information we derive provides us with a manner of looking at the world. In economic systems, businesses, and projects that data provides us with a basis for interpretation, but oftentimes falls short of allowing us to effectively describe and understand what is happening.

Capturing interrelated data across domains allows us to look at the phenomena of these human systems from a different perspective, providing us with the opportunity to derive new knowledge. But in order to do this, we have to be open to this possibility. It also calls for us to, as I have hammered home in this blog, reset our definitions of what is being described.

For example, there are guides in project and program management that refer to statistical measures as “predictive analytics.” This further waters down the intent of the phrase. Measures of earned value are not predictive. They note trends and a single-point outcome. Absent further analysis and processing, the statistical fallacy of extrapolation can be baked into our analysis. The same applies to any index of performance.

Furthermore, these indices and indicators–for that is all they are–do not provide knowledge, which requires a means of not only distinguishing between correlation and causation but also applying contextualization. All systems operate in a vector space. When we measure an economic or social system we are really measuring its behavior in the vector space that it inhabits. This vector space includes the way it is manifested in space-time: the equivalent of length, width, depth (that is, its relative position, significance, and size within information space), and time.

This then provides us with a hint of a definition of what often goes by the definition of “big data.” Originally, as noted in previous blogs, big data was first used in NASA in 1997 by Cox and Ellsworth (not as credited to John Mashey on Wikipedia with the dishonest qualifier “popularized”) and was simply a statement meaning “datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze.”

This is a relative term given Moore’s Law. But we can begin to peel back a real definition of the “bigness” of data. It is important to do this because too many approaches to big data assume it is flat and then apply probabilities and pattern recognition to data that undermines both contextualization and knowledge. Thus…

The Bigness of Data (B) is a function (f ) of the entropy expended (S) to transform data into information, or to extract its information content.

Information evolves. It evolves toward greater complexity just as life evolves toward greater complexity. The universe is built on coded bits of information that, taken together and combined in almost unimaginable ways, provides different forms of life and matter. Our limited ability to decode and understand this information–and our interactions in it– are important to us both individually and collectively.

Much entropy is already expended in the creation of the data that describes the activity being performed. Its context is part of its information content. Obliterating the context inherent in that information content causes all previous entropy to be of no value. Thus, in approaching any set of data, the inherent information content must be taken into account in order to avoid the unnecessary (and erroneous) application of data interpretation.

More to follow in future posts.

Driver’s Seat — How Software Normalization Can Drive Process Improvement

Travel, business, and family obligations have interrupted regular blogging–many apologies but thanks for hanging in there and continuing to read the existing posts.

Over the past couple of weeks I have taken note of two issues that regularly pop up: the lack of consistency in how compliance is applied by oversight organizations within both industry and within government, especially in cases of government agencies with oversight responsibility in project management; and the lack of consistency in data and information that informs project management systems.

That the same condition exists in both areas is not, I believe, a coincidence, and points to a great deal of hair-pulling, scapegoating, and finger-pointing that would otherwise have been avoided over the years.  I am not saying that continual process improvement without technology is not essential, but it is undoubtedly true that there is a limit to how effectively information can be processed and consumed in a pre-digitized system compared to post-digitized systems.  The difference is in multiples, not only in the amount of data, but also in the quality of the data after processing.

Thus, an insight that I have observed as we apply new generations of software technology to displace the first and second wave of project management technologies is an improved ability to apply consistency and standardization in oversight.  Depending on where you stand this is either a good or bad thing.  If you are a traditional labor-intensive accounting organization where you expect a team of personnel to disrupt the organization in going through details of a paper trail, then you are probably unhappy because your business model will soon be found to be obsolete (actually it already is depending on where your customer sits on a scale of digitization).  If you are interested, however, in optimization of systems then you are probably somewhere to the positive on the scale.

Software companies are mainly interested in keeping their customers tied to their technology.  For example, try buying the latest iPhone if you have an existing plan with a carrier but want to switch to someone else.  This is why I am often puzzled by how anyone in the economics or political science professions cannot understand why we have new technological robber barons with the resulting concentration in wealth and political power.  One need only look at how the railroads and utilities tied entire swaths of the country into knots well into the 20th century prior to anti-trust enforcement.  The technology is new but the business model is the same.

The condition of establishing technological islands of code and software is what creates diseconomies in processes.  The costs associated with multiple applications to address different business processes increases costs and reduces efficiency not only because of proprietary idiosyncrasies which create duplicative training, maintenance, and support requirements, but also because of the costs associated with reconciliation and integration of interrelated data, usually accomplished manually.  On the systems validation and oversight side, this lack of consistency in data drives inconsistency in the way in which the effectiveness of project management systems are assessed.

Years of effort, training, policy writing, and systems adjustments have met with the law of diminishing returns while ignoring the underlying and systemic cause of inconsistency in interdependent factors.  Yet, when presented with a system in which otherwise proprietary and easily reconcilable data is normalized to not only ensure consistency but quality, the variations in how the data is assessed and viewed diminishes very quickly.  This should be no surprise but, despite the obvious advantages and economies being realized, resistance still exists, largely based in fear.

The fear is misplaced only because it lies in the normal push and pull of management/employee and customer/contractor relations.  Given more information and more qualitatively insightful information, the argument goes, the more that oversight will become disruptive.  That this condition exists today because of sub-optimization and lack of consistency does not seem to occur to the proponents of this argument.  Both sides, like two wrestlers having locked each other in a stronghold that cannot result in a decision, is each loathe to ease their own grip in fear that the other will take advantage of the situation.  Yet, technology will be the determining factor as the economic pressures become too hard to resist.  It is time to address these fears and reestablish the lines of demarcation in our systems based on good leadership and management practices–skills that seem to be disappearing as more people and companies become focused on 1s and 0s.

Note: The post has been modified to correct grammatical errors.  Travel took its toll on the first go-round.

Better Knock-Knock-Knock on Wood — The Essential Need for Better Schedule-Cost Integration

Back in early to mid-1990s, when NSFNET was making the transition to the modern internet, I was just finishing up my second assignment as an IT project manager and transitioning to a full-blown Program Executive Office (PEO) Business Manager and CIO at a major Naval Systems Command.  The expanded potential of a more open internet was on everyone’s mind and, on the positive side, on how barriers to previously stove-piped data could be broken down in order to drive optimization of the use of that data (after processing it into useable intelligence).  The next step was then to use that information, which was opened to a larger audience that previously was excluded from it, and to juxtapose and integrate it with other essential data (processed into intelligence) to provide insights not previously realized.

Here we are almost 20 years later and I am disappointed to see in practice that the old barriers to information optimization still exist in many places where technology should have long ago broken this mindset.  Recently I have discussed cases at conferences and among PM professionals where the Performance Management Baseline (PMB), that is, the plan that is used to measure financial value of the work performed, is constructed separately from and without reference to the Integrated Master Schedule (IMS) until well after the fact.  This is a challenge to common sense.

Project management is based on the translation of a contract specification into a plan to build something.  The basic steps after many years of professional development are so tried and true that it should be rote at this point:  Integrated Master Plan (IMP) –> Integrated Master Schedule (IMS) with Schedule Risk Assessment (SRA) –> Resource assignments with negotiated rates –> Develop work packages, link to financials, and roll-up of WBS –> Performance Management Baseline (PMB).  The arrows represent the relationships between the elements.  Feel free to adjust semantics and add additional items to the process such as a technical performance baseline, testing and evaluation plans, systems descriptions to ensure traceability, milestone tracking, etc.  But the basic elements of project planning and execution pretty much remain the same–that’s all there is folks.  The complexity and time spent to go through the steps varies based on the complexity of the scope being undertaken.  For a long-term project involving billions or millions of dollars the interrelationships and supporting documentation is quite involved, for short-term efforts the process may be in mental process of the person doing the job.  But in the end, regardless of terminology, these are the basic elements of PM.

When one breaks this cycle and decides to build each of the elements independently from the other it is akin to building a bridge in sections without using an overarching plan.  Result:  it’s not going to meet in the center.  One can argue that it is perfectly fine to build the PMB concurrent with the IMS if the former is informed by the latter.  But in practice I find that this is rarely the case.  So what we have, then, is a case where a bridge is imperfectly matched when the two sections meet in the middle requiring constant readjustment and realignment.  Furthermore, the manner in which the schedule activities are aligned with the budget vary from project to project, even within the same organization.  So not only do we not use a common plan in building our notional bridge, we decide to avoid standardization of bolts and connectors too, just to make it that more interesting.

The last defense in this sub-optimized environment is: well, if we are adjusting it every month through the project team what difference does it make?  Isn’t this integration nonetheless?  Response #1:  No.  Response #2:  THIS-IS-THE-CHALLENGE-THAT-DIGITAL-SYSTEMS-ARE-DESIGNED-TO-OVERCOME.  The reason why this is not integration is because it simultaneously ignores the lessons learned in the SRA and prevents insights gained through optimization.  If our planning documents are contingent on a month-to-month basis then the performance measured against them is of little value and always open to question, and not just on the margins.  Furthermore, utilization of valuable project management personnel on performing what is essentially clerical work in today’s environment is indefensible.  If there are economic incentives for doing this it is time for project stakeholders and policymakers to end them.

It is time to break down the artificial barriers that define cost and schedule analysts.  Either you know project and program management or you don’t.  There is no magic wall between the two disciplines, given that one cannot exist without the other.  Furthermore, more standardization, not less, is called for.  For anyone who has tried to decipher schedules where smiley-faces, and non-standard and multiple structures are in use in the same schedule, which defy reference to a cost control account, it is clear that both the consulting and project management communities are failing to instill professionalism.

Otherwise, as in my title, it’s like knocking on wood.